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1 Introduction

It has long been considered a postulate of rationality that a decision-maker
has a preference relation that is transitive and complete over a choice set
X. By complete, we mean that for any two alternative choices x,y € X, the
decision-maker either prefers = to y, y to x or is indifferent between x and
y. A decision-maker who is sometimes unable to order choices is said to have
incomplete preferences, or is said to be indecisive. There are many natural
instances where in fact, it is far more realistic to assume the decision-maker to
be indecisive. When choice involves options that are highly complex, or that
the decision-maker is not sufficiently familiar with, it is natural for them
to be indecisive, by postponing the decision for a later date (Gerasimou,
2018). If choice involves aggregating the preferences of several committee
members, it is often likely that indecision arises due to lack of consensus.
In coalition games, where a subset of agents may have a greater say over
decision-making, or at the limit have veto power, indecisiveness is also very
likely (a well-studied case is the decision making process of the United Na-
tions” Security Council). If X is a set of social states, requiring the social
planner to be endowed with a complete social welfare ordering would be a
very demanding assumption, ‘...for it is only natural to allow social ethics
criteria not to be able to rank every social alternative. (Ok, 2002: p. 431).
Choice under uncertainty may often result in indecision because the decision-
maker cannot assess the exact probabilities of particular outcomes, or has no
way of ascertaining payoffs, due to lack of familiarity with the particular risks
involved.!

Alongside these theoretical settings where indecisiveness was shown to
arise, there is growing experimental evidence that preferences are incomplete
(see below). Thus, there is a need at the conceptual level to formalize dif-
ferent notions of indecisiveness, and at the empirical level, to synthesize the
experimental evidence using appropriate tools of measurement, that is in-
decisiveness metrics and orderings. One may be tempted to use height and
width measures already available in the context of partial orders, to mea-
sure incompleteness of preference preorders.? However, as the experimental

IFor a theory of expected utility in the context of incomplete preferences, we refer the
reader to Dubra, Maccheroni, and Ok (2004).

2We provide a formal definition of partial orders and preorders below. However, we
mention here that a partial order is a special type of preorder that does not allow for
decision-makers to exhibit indifference between distinct alternatives.



evidence documents, in the context of individual choice, agents experience
separately phenomena of indifference and indecisiveness.®> To account for
both these phenomena, our interest in this paper will be in measuring in-
completeness of preference preorders, as opposed to partial orders. Apart
from Gorno (2018) who provides one such ordering, there are no measures
that can easily be implemented. This paper introduces axioms for indeci-
siveness, and further axiomatically characterizes one new decisiveness order
and two new decisiveness metrics. The latter are particularly convenient
summary statistics to use in experimental work, and we illustrate the use
of these new decisiveness measures in the context of preference preorders
constructed by Gerasimou (2021) from consumer choice data.

The main results of the paper are the following. In Proposition 1 we ax-
iomatically characterize the first decisiveness metric, defined as the number
of pairs alternatives a decision-maker is able to compare from a finite choice
set. The second decisiveness metric, the number of complete preorder exten-
sions of an incomplete preference relation, is characterized in Proposition 2.
En route, in order to obtain these characterization results, the paper also con-
tributes to the theoretical indecisiveness literature from several perspectives.
Firstly, we introduce the set of order extensions of an incomplete preference
preorder as a general framework for examining models of indecisiveness in
economics. In doing so, we generalize somewhat the set of order extensions of
a partial order, initially introduced in the mathematical sciences by Brualdi,
Jung, and Trotter (1994). To characterize the second decisiveness metric, we
have found it also useful to introduce a novel definition of the decomposition
of the preference relation of an indecisive decision-maker (Definition 3). This
definition was used to obtain a novel parsimonious decomposition of the pref-
erence relation of an indecisive decision-maker (Lemma 1), that is somewhat
computationally simpler to work with than the classic result of Szpilrajn
(1930) and Richter (1966), defining an incomplete preference relation as the
intersection of its set of complete preorder extensions. Further to charac-
terising a function that counts the number of complete preorder extensions
of an incomplete preference relation (Proposition 2), we also propose a sim-
ple method for ordering decision-makers according to the second decisiveness
metric (Proposition 3). Such a method combines the new preorder decompo-

3For an extension of the axioms of revealed preference in the context where the decision-
maker experiences indifference as well as indecisiveness, we refer the reader to Eliaz and
Ok (2006).



sition along with some of the axioms that have been used to characterise the
first decisiveness metric. Finally, we explore the formal relationship between
the proposed decisiveness orderings (Corollary 2) by showing — amongst other
things — that the two decisiveness metrics are logically independent.

This paper has arisen as a necessity to complement the experimental lit-
erature documenting the pervasiveness of indecisiveness, with an appropriate
framework and tools of measurement. Danan and Ziegelmeyer (2006) and
Cettolin and Riedl (2019) provide evidence that preferences are incomplete
in experiments involving choices under risk and uncertainty, respectively.
Qiu and Ong (2017) design an experiment aimed at disentangling indiffer-
ence from indecisiveness in choice and find strong evidence in favour of the
latter. Costa-Gomes, Cueva, Gerasimou, and Tejis¢édk (2022) and Gerasimou
(2021) find that, forcing subjects to choose increases the extent to which their
choice behavior becomes inconsistent. They report that a substantial frac-
tion of subjects’ decisions can be explained by preferences being incomplete.
Although our work is theoretical, it nonetheless relates to the experimental
literature in at least two ways. First, the decisiveness orderings studied in
this paper can be employed to measure the decisiveness of preferences that
are elicited in experimental studies. A simple illustration of such an exercise
is given in Section 5 of this paper. Second, in experimental and — more gen-
erally — applied work that explores the relationship between decisiveness and
other economically relevant variables, the orderings studies in this paper can
be used to formulate proxies for an agent’s degree of decisiveness.

Our work also relates to the theoretical literature on indecisiveness. Eliaz
and Ok (2006) and Gerasimou (2018) both investigate the choice-theoretic
implications of decision-makers being indecisive. While in the former, inde-
cisiveness over a pair of alternatives x and y is revealed whenever decision-
makers choose both = and y (and some other conditions are satisfied), in the
latter indecisiveness is revealed whenever decision-makers defer the choice
between x and y. Despite this difference, in both models the reason why the
individual exhibits these choice behaviours is that they are unable to compare
x and y. Although this paper investigates a different research question, the
present paper relates to Eliaz and Ok (2006) and Gerasimou (2018), in that
the first decisiveness metric that is axiomatically characterised in this pa-
per uses the same principle that Eliaz and Ok (2006) and Gerasimou (2018)
utilise to conceptualise indecisiveness, i.e., counting the number of instances
in which a decision-maker is unable to compare two alternatives.

On the other hand, Gorno (2018) studies the structure of incomplete pref-
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erences by proposing one decisiveness order. Our work complements Gorno
(2018) by introducing one further decisiveness ordering and two decisiveness
metrics and by further exploring the relationships between them.

One further strand of theoretical literature on indecisiveness investigates
the multi-utility representation of incomplete preferences (Ok, 2002). In that
literature, a key result that is used to derive a multi-utility representation
is that the intersection of all the complete preorder extensions that extend
a given incomplete preference relation is equal to the incomplete preference
relation itself (Szpilrajn, 1930; Richter, 1966). Although this paper studies a
different problem, it relates to this literature in that the second decisiveness
metric that is axiomatically characterised in this paper is based on the very
same result, in that it counts the number of complete preorder extensions of
an incomplete preference relation.

The next section introduces the set of preorder extensions of an incomplete
preference relation. There, we also define a new decisiveness order and two
related metrics on the set of preorder extensions, that we shall axiomatize
in subsequent sections of the paper. In Section 3 we introduce a number of
axioms for decisiveness order relations, and characterize the first decisiveness
metric. In Section 4, we introduce further axioms, and a novel decomposition
of preference preorders, that are further used in order to characterize the
second decisiveness metric. In Section 5, we apply these decisiveness orders
and metrics in the context of preference preorders recovered by Gerasimou
(2021) in the context of consumer choice. Section 6 concludes the paper.
The appendix contains proofs of all results, and further demonstrates that
the axioms introduced in this paper are logically independent.

2 Preorders, order extensions, and decisive-
ness

We begin this section with a number of definitions and properties of pre-
ordered sets. We then specialize this discussion in the context of choice over
a finite set, where we introduce the set of order extensions of an incomplete
preference preorder. We then introduce several decisiveness metrics defined
on the set of preorder extensions.

Let X be an n-element set. To simplify the discussion in this paper, we
shall assume throughout that the indecisive decision-maker is endowed with



a preference relation > over X, that is reflexive and transitive. We denote
the resulting preorder E := (X, =, ), where the notation x > y denotes that
x = y while y ¥ x. We also let x ~ y signify that x > y and y > z, so that
> is an asymmetric relation, while ~ is symmetric. Two distinct elements
x and y of X are said to be comparable if either © > y or y = x. The
notation x || y is used to denote that z and y are not comparable. The set
of incomparable elements associated with the preorder (X, >, >) is defined
as inc(X, =, >) = {(z,y) € X x X : z|ly}. The set of comparable pairs
or comparability set is defined as comp(X, =, =) := (X x X)\inc(X, =, >),
and we sometimes use the simpler notation comp(E) for the comparability
set of (X, >, >). When every pair (z,y) € X x X is =-comparable, we say
that (X, =, >) is a complete preorder. When comp(E) = (), we say that the
decision-maker is completely indecisive. Accordingly, their preferences are
structured as an antichain.*

Example 1. Consider a four-element choice set X = {a, b, c,d} and two
preference preorders that we denote £, = (X, =1, =1) and F, = (X, =2, -2).
We assume that a ~ b ~ ¢ in the relation £} and furthermore that d is incom-
parable to a, b and c. Because a preorder is reflexive, every element is indif-
ferent to itself. For compactness, we omit writing the reflexive part of the re-
lation and we simply write ='= {(a,b), (a,c), (b,c), (b, a), (c,a), (¢,b)}, while
> is equal to the empty set. We assume that == {(a,b), (a, ), (b, ¢), (a,d)}
and =2=>2.0

It is convenient in the context of finite preorders to depict the relation
graphically in terms of a Hasse diagram. In Figure 1, we sketch the Hasse di-
agrams for the preorders £} and Fy. We also define the incomparability sets
of the two relations, as follows: inc(X, = =) = {(a,d), (b,d), (c,d)} and
inc(X, =2 =%) = {(b,d), (c,d)}. From this information we can also deduce
the comparability sets. They are given by comp(X, = =) = {(a,b), (a, ), (b,c)}
and comp(X, =2, =2) = {(a,b), (a,c), (b,c), (a,d)}.

“We define a relation (X,>=!,=1) on a finite choice set to have the structure of an
antichain whenever, for all a,b € X, a and b are incomparable.



Figure 1: Hasse diagrams of preorders F; and FE,

2.1 The set of order extensions of an incomplete pref-
erence preorder

Our interest in this paper being in measuring indecisiveness of decision-
makers, we next introduce the set of preorder extensions of an antichain
defined on a finite choice set. We first define the concept of an extension of a
preorder (see Chambers and Echenique (2016: p. 5) for a general discussion).

Definition 1 (Preorder Extension). Let E; := (X, =", >") and E; := (X, I
,>J) denote two preorders on a finite choice set X. We shall say that E; is
a preorder extension of E;, if =" is a subset of =7 and =* is a subset of =7.
We denote that E; is an extension of E; by E; = gext ;.

More simply Ej; is a preorder extension of £; whenever, if decision-maker
1 regards tea to be at least as good as coffee, then decision-maker j likewise
perceives tea to be at least as good as coffee, and if decision-maker i strictly
prefers chocolate ice-cream to vanilla ice-cream, then decision-maker j also
strictly prefers chocolate over vanilla ice-cream.® In other words, preorder
E; is a preorder extension of preorder F; whenever F; orders the pairs of
alternatives in X in the same way as FE; does, and possibly orders additional
pairs of alternatives. As such, E; is always an order extension of itself.

For a fixed choice set X and a relation E; := (X, =%, =), we may define a
set that contains all preorder extensions of E; using the following notation:

SObserve that if E; =gest E;, Definition 1 prohibits that a ~* b while b =7 a, and
likewise it is not possible that b =% a while a ~7 b.
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Figure 2: The set of preorder extensions of Fj

T Ez = {E] : Ej tdext Ez} . (1)

If the preorder E; is incomplete, then there are clearly diverse ways in
which the indecisiveness in F; can be resolved. The set 1 E; describes all
possible manners in which preorder E; can be completed, by considering the
different ways in which the pairs of alternatives in the incomparability set
inc(X, =% >=") of E; can be ordered. In Figures 2 and 3, we depict the sets
T E; and 1 E, of Example 1. Observe that in Figure 2 depicting T Fji,
a relation F; is an order-extension of F; when E; appears above Fj;, and
additionally when there is a sequence of edges that connects the two relations.
Observe that the relation >4t is reflexive, antisymmetric, and transitive
over a given set T E . As such, each of the ordered pairs (1 Ey, > g4est) and
(1 By, =geat) is a partial order,® and the diagrams of Figures 2 and 3 are
Hasse diagrams. It important furthermore to note that the relation > gest is
not complete. In Figure 3, for example, the left-most preorder on the second
level and the right-most preorder in the third level are not comparable by
= aext; in the former b > d, in the latter b ~ d.

In this paper, the set of preorder extensions of an n-element antichain
will play a prominent role. Using Definition 1, we define Ey := (X, =%, >=9)
such that =% and = are both empty sets. Because F, has the structure

6A partial order is a preorder where for all a,b € X, a = b and b > a, implies that
a = b. That is, a partial order is an antisymmetric type of preorder.
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of an m-element antichain, we refer to Ey as the preorder associated with
the completely indecisive decision-maker. We next introduce the set of or-
der extensions of the preference preorder Ey, associated with the completely
indecisive decision-maker:

T EO == {EJ : Ej tdezt Eo} (2)

By analogy with the above discussion, it follows that (1 Fq, = gest ), the set
of preorders that extend the n-element antichain, is structured as a partial
ordering, with the property that E; := (X, =% =) =geet E; := (X, =9, 7)
if £; is a more complete preorder than E;. Observe that (T Ep, >=ge=t) is
exhaustive, in the sense that any preorder defined on the choice X must be
an element of the set of preorder extensions. It is for this reason that we
shall define decisiveness orders on (1 Eq, = gest) below.

Note also that the set

ext(Ey) .= {E €1 Ey : E is a partial order} (3)

defines the set of poset extensions of the antichain Ey. Given that ext(Ej)
C7T Ey, the set of preorder extensions defined in this paper generalises the set
of poset extensions, that has been extensively investigated in Brualdi, Jung,
and Trotter (1994).7

Following theorems of Szpilrajn (1930) and Richter (1966), for every pre-
order F; €1 Ey, there exists a complete preference relation in 1 FEj that
extends E;. Tt follows accordingly that the maximal elements of (1 Ep, = gest)
are complete preference relations. For a given preorder F, we denote the
subset of complete preorder extensions of F by C(FE), where

C(E):={F €1 E : F is a complete preorder} (4)

In figure 3 the set C(Es) of complete preorder extensions of Fs therefore
consists of five preference relations. In the special case where E is the prefer-
ence relation of the completely indecisive decision-maker, i.e. E = Ey, C(E))

"Brualdi, Jung, and Trotter (1994) show that, within the set of poset extensions
ext(Ep), every maximal chain is of equal length; that is, (ext(Ep), =gest) is a ranked
poset. In contrast, it turns out that the set of pre-order extensions (1 Ep, > g4eet) defined
in this paper is not ranked. To see why, take a three-element choice set X = {a,b,c} and
observe that (i) any maximal chain whose top element is the linear order a > b > ¢ is of
length four, and (4¢) any maximal chain whose top element is the preorder a ~ b ~ ¢ is of
length three.
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is the set of all complete preference preorders. In our illustrative examples
below, we shall provide examples of 1 E; for several preorders E; constructed
by Gerasimou (2021) from consumer choice data.

2.2 Measuring indecisiveness on the set of preorder ex-
tensions

We can observe from figure 3 that preference relations that are located closer
up to the maximal elements of the set of preorder extensions tend to exhibit
more decisiveness than those positioned further down in the set of preorder
extensions. We now introduce the decisiveness orders and metrics we shall
be defining on the set of preorder extensions (1 Eg, =g4et). We can think of
each of the decisiveness orders of Definition 2 below as conceptualising the
above intuition in different ways.

Definition 2 (Four Decisiveness Orders). Let E; = (X,*",>") and E; =
(X, =7,=7) denote two relations in the set of preorder extensions T Ey. We
define E; to be less decisive than Ej in the following four ways:

(1) Ej =qeat B, equivalently, E; € 1 E;,
(it) Ej = geomp E; if the comparability set comp (E;) is a subset of comp (Ej),

(1it) E; ¥ geara—comp B if |comp (E;)| > |comp (E;) |; that is if comp (E;) has
fewer elements than comp (E;),

() E; =4 E; if |C(E;)| > |C(E;)|; that is, if E; has more complete
preorder extensions than Ej.

The first decisiveness relation =gt is due to Gorno (2018). The next
three relations are new. The decisiveness relation >ge.: is very natural:
decision-maker j is taken to be more decisive than decision-maker ¢ whenever
E; is a preorder extension of F; in the sense of Definition 1. The second rela-
tion > geomp ranks decision-maker j to be more decisive than decision-maker ¢
whenever decision-maker j is able to order the same pairs of alternatives as
those of decision-maker i, and possibly is able to order additional pairs. Un-
like = gewt, > geomp does not consider how the pairs of alternatives are ordered,
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but only whether they are comparable. On the other hand, as in the case of
> geat, = geomp is an incomplete relation.® ?

We next turn our attention to the two decisiveness metrics. The third
relation, > jeari—comp, ranks decision-maker j to be more decisive than decision-
maker ¢ whenever decision-maker ¢ is able to compare fewer pairs of al-
ternatives than decision-maker 7. The choice-theoretic literature indicates
that indecisiveness over a pair of alternatives x and y is revealed whenever
decision-makers either (i) choose both x and y (and some other conditions
are satisfied) (Eliaz and Ok, 2006), or (ii) defer the choice between z and y
(Gerasimou, 2018). In these models, the reason why the individual exhibits
these choice behaviours is that they are unable to compare x and y. As such,
according to the metric > jeard—comp an individual 7 is taken to be more decisive
than some other individual j, whenever there are fewer instances whereby
individual 7 is unable to compare a pair of alternatives z and y relative to
individual j.

Finally, recall that the set C(E;) contains all the different complete pre-
orders that extend the preferences of decision-maker 7. As such, if the set
C(E;) contains fewer preference relations than C(E;), according to the fourth
criterion, >=q4up, decision-maker j is taken to be more decisive than i. Con-
sider two individuals, ¢ and j, with incomplete preferences given by F; and
E;, respectively. Suppose that their preferences satisfy the property that
|C(E;)| > |C(E;)|. This means that for individual 7 there is a greater number
of complete preference preorders that complete their preferences. As such,
one can view the task of resolving indecisiveness to be more difficult for in-
dividual 7 than for individual j, precisely because the former individual has
more degrees of freedom than the latter - in the sense of being confronted
with a larger number of possibilities to complete their preferences. Given
that difficulty of selection is typically associated with decision avoidance and
indecisiveness (Anderson, 2003), individual j is defined to be more decisive

8To see why, consider a three-element choice set X = {a, b, c} and two preorders on X:
(1) a preorder whereby a ~ b and both a and b are incomparable to ¢ and (ii) a preorder
whereby a ~ ¢ and both a and ¢ are incomparable to b. Clearly, these two preorders are
not comparable by > geomp.

90One distinction to make between the two decisiveness relations is that while (1
Ey, = g4eet) is a partial order, the latter, (1 Eg, =geomn), is a preorder. In other words,
in the context of > jest, if decision-maker ¢ is more decisive than j and likewise j is more
than decisive than 7, the two decision-makers necessarily have identical preferences. In
contrast, this property does not hold in the context of the latter decisiveness relation.
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than individual ¢ according to > gup.
Our next task is to provide an axiomatic foundation for the various defi-
nitions of decisiveness introduced in this paper.

3 Characterisation of a First Measure of De-
cisiveness - (cerd—comp

We begin the task of characterising the decisiveness metric d°74=<m? by
introducing a number of axioms.

Let >, denote a decisiveness relation on the set of preorder extensions
T Ey. We consider the following properties.

Transitivity [A1l]. >, is a transitive relation.

Transitivity [Al] is clearly a natural property that defines any order re-
lation and, more so, in the context of a decisiveness metric.
The next axiom [A2] is a rewriting of Definition 1.

Order Extension [A2]. For all E; and E; in the set of preorder exten-
sions T Ey, if E; is a preorder extension of Fj;, then E; =4 F;.

Axiom [A2] ensures that, if preorder Ej is an order extension of £;, then
the decisiveness metric =, ranks £; to be more decisive than F;. Return
to Figure 3 and observe there that the diamond-shaped preorder is an order
extension of Ey. Axiom [A2] then requires that the diamond-shaped preorder
is more decisive than Fj.

Comparability-Graph Invariance [A3]. For all E; and E; in the set
of preorder extensions 1 Ey, if F; and E; have identical comparability graphs,
then Ez ~dq Ej.

Axiom [A3] postulates that if two preorders have identical comparability
sets, then they should be considered to be as decisive as one another according
to relation =4. For instance, in Figure 4 E; and FE; are distinct preference
relations that have identical comparability sets. According to [A3], we take
E; and F; to equally decisive.

13
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Figure 5: An Illustration of the Hasse-Diagram Invariance Axiom [A4]

Hasse-Diagram Invariance [A4]. For all E; and E; in the set of
preorder extensions 1 Ey, if the Hasse diagrams of £; and E; are identical
up to a relabelling of vertices, then E; ~4 F;.

Axiom [A4] is best explained with the help of Figure 5. There E; and E;
have identical Hasse diagrams, up to a permutation of their vertices. In FEj,
a > b and ¢ ~ d. On the other hand, in the preference relation F;, b > d
and a ~ c. Because the Hasse diagram of E; represents a preference relation
obtained from F; via the vertex permutation {a, b, c,d} — {b,d, c,a}, axiom
[A4] requires that E; and E; are equally decisive.

Before we introduce our next axiom, we need to introduce further notation
as well as the concept of a passive pair. For a preference preorder E; = (X, =°
,>=%) with the property that a given pair (z,y) ¢ comp(E;), we denote by
E;U{z = y} the binary relation that results from appending to both =" and
= the ordered pair x = y. Observe that we refer to E; U {x = y} only as a

14
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Figure 6: An Ilustration of the Independence Axiom [A5]

binary relation, because this relation may fail to be transitive.'® Next, let E;
be an incomplete preorder in 1 Ey, and let (z,y) be an incomparable pair at
E;. Following Caspard, Leclerc, and Monjardet (2012), we say that x > y is
a passive pair for E; whenever E; U {x = y} is still a preorder.!!

Independence [A5]. For all E; and Ej in the set of preorder extensions
1 Ey such that

(i) (z>y) ¢ Ei, Ej;
(ii) « > y is a passive pair for both E; and E;.

If B, ~q4 Ej, then F; U {.ZE - y} ~gq Ej U {Z‘ - y}

10We provide in Figure 6 two examples of preorders E; and E; to which we append a
pair a > b, which initially did not belong to their comparability sets, with the result that
E;U{a > b} and E; U {a > b} are transitive relations.

1See in particular Definition 1.34 of page 21 in Caspard, Leclerc, and Monjardet (2012),
which is given in the context of partial orders. Observe that in the more general context
of preorders, = ~ y may also define a passive pair. We return to this point further down in
the paper. It is also common usage to refer to a passive pair under the name of a critical
pair.
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Axiom [A5] requires that, if two incomplete preference relations E; and
E; are equally decisive according to =4 and a > b is a passive pair for both
E; and Fj;, then adding this same passive pair to both preference relations
renders E; U {a > b} and E; U{a > b} equally decisive according to >=,. We
illustrate this axiom in Figure 6. In this example, (a > b) is a passive pair
in both E; and E;. Accordingly, if E; ~; E;, axiom [A5] ensures that in the
bottom panel E; U {a > b} and E; U {a > b} must remain equally decisive.

Before we present the main result of this section, we note an intermediate
result that is obtained by combining the first three axioms discussed above.
Recall that E; > geoms E; if the comparability set of E; is a subset of comp(E;).
The decisiveness relation = gcomy can immediately be seen to be characterised
by axioms [Al], [A2], and [A3]. Note that transitivity is needed: while [A3]
enables the construction of indifference classes of = geoms and [A2] enables the
construction of the strict subrelation > geomp, transitivity [Al] is required to
characterise the transitive closure of these two components of > gjcomp. On
the other hand, by definition, the decisiveness relation >4t is characterised
entirely by [A2]. We gather these observations in the following remark.

Remark 1.

o A decisiveness measure =g is equal to > geomp if and only if it satisfies

[A1]+[A2]+[A3].

o A decisiveness measure =4 is equal to =gest if and only if it satisfies

[A2)].

The next result states that a decisiveness measure on the set of preorder
extension is equal to > gearda—comp if and only if it satisfies axioms [A1]-[A5].

Proposition 1 (Characterisation of d°@d=<mP). Let =, denote some deci-
siveness relation on the set of preorder extensions T Ey. The relation =4
satisfies transitivity [A1], order-extension [AZ2], comparability-graph invari-
ance [A3], Hasse-diagram invariance [A4], and independence [A5] if and only
’Lf Ed:tdcard—comp .

Although the proof of this result is detailed in the appendix, we here
provide a summary of the three main steps involved. Firstly, Step 1 consists
in defining a surjective map from the set of preorder extensions 1T Ej to the
set of poset extensions ext(Fy), with the additional property that the map is
order-preserving for the decisiveness relation. The order-preserving property
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is obtained by making use axiom [A3] together with transitivity [Al]. In the
end of Step 1, it becomes possible to focus our attention in the proof on the
relations defined in the set of poset extensions.

Our interest in Step 1 in moving from the set of preorder extensions to
the set of poset extensions is to make use of the convenient property, that
in the latter set, every maximal chain has identical length (footnote 7). As
such, in Step 2 it becomes possible - within the set of poset extensions - to
construct a proof by induction on the cardinality of the comparability sets.
From the transitivity and Hasse-Diagram Invariance axioms, all posets with
one comparable pair become equally decisive. From then on, we appeal to
axiom [A5] to prove by induction that two posets E; and E; with an equal
number of comparable pairs are equally decisive.

The final step consists of showing that if E; has more comparable pairs
than E;, then - by using Step 2, transitivity [Al], and the order-extension
property [A2] - E; is more decisive than £;.

Because in Step 1 we are able to map the set of preorder extensions to the
set of poset extension using an order-preserving function for the decisiveness
relation and Steps 2 and 3 no longer appeal to axiom [A3], it is possible to
state the following corollary of Proposition 1.

Corollary 1. Let =4 denote some decisiveness relation defined on the subset
of poset extensions ext(Ey) CT Ey. The relation =, satisfies transitivity [A1],
order-extension [A2], Hasse-diagram invariance [A4], and independence [A5]
if and only if > 3= geard—comp.

The decisiveness orders and metrics axiomatically characterised in this
paper will be put to work on consumer data from the study of Gerasimou
(2021) in Section 5 of the paper.

4 Characterisation of the Second Decisiveness
Measure - d"

Our next task will be to axiomatically characterise the second decisiveness
metric of Definition 2, namely d“?. Recall that F; =4 F; whenever the
cardinality of the set C(E;) of complete preorder extensions of E; is smaller
than, or equal to, the cardinality of C(E;). Our strategy here is somewhat
different from the one adopted in the section above, in that - rather than di-
rectly axiomatising the relation > 4u» - we characterise a function f :1 Ey — N
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that counts the number of complete preorder extensions of a given preference
relation.

We begin with a novel preorder decomposition that we shall make use of
repeatedly.

Definition 3 (Preorder Decomposition). Let E €1 Ey be an incomplete
preorder. A set of preorders (P, ..., Pk) is a preorder decomposition of
E whenever (C(Py),...,C(Pk)) forms a partition of C(E).

In the context of indecisiveness, the preorder decomposition captures
the intuitive property that an indecisive decision-maker can be represented
by a collection of their multiple selves Pi, ..., Px (Fudenberg and Levine,
2006). The definition formalises the properties the multiple selves must sat-
isfy, by requiring that an incomplete preorder E is represented by a num-
ber of preorders, in the sense that the sets of complete preorder extensions
C(Py),...,C(Pk) partition the set of complete preorder extensions of E. One
instance of this decomposition is given by the theorems of Szpilrajn (1930)
for partial orders and Richter (1966); that is, the instance where P, ..., Pk
are complete preorder extensions of preorder . A further instance of the
decomposition is provided in Lemma 1 below.

Lemma 1. Let E €1 Ey be an incomplete preorder. Then, there are three
preorders P,Q, R €1 Ey such that (P,Q, R) is a preorder decomposition of
E.

The above result shows that with as few as three elements, it is possible
to obtain a preorder decomposition in the sense of Definition 3. Note that
this decomposition is parsimonious in the sense that it is not possible to have
a smaller set of preorders that decompose an incomplete relation.'? With the
Decomposition Lemma it is now possible to state the axioms characterise to
the decisiveness measure d*?.

Recall that the function f maps each given preorder to a natural number.
The purpose of the axiomatisation exercise is to impose restrictions on the

12Consider the following simple case: X = {a,b} and the preference relation E is given
by the two-element antichain. Even in this simplest case, three relations are needed in
order to obtain the preorder decomposition of E, namely, a preorder P; such that a > b,
a preorder P, where a ~ b, and a preorder P; where b > a.
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function f so that it counts the number of complete preorder extensions of
a preorder E. We consider the following.

Additivity [B1]: Let E, P,Q, R €1 Ey be preorders, where E is incom-
plete, and let f 1 Fy — N. If (P,Q, R) is a preorder decomposition of F,

then f(E) = f(P) + f(Q) + f(R).

Return to the multiple selves that decompose a preorder in the sense
of Definition 3. Lemma 1 states that in general there is a decomposition
with three such selves. Axiom [B1] then requires that the indecisiveness of a
decision-maker is additive in the indecisiveness of the three such selves.

Normalisation [B2]: Let G €1 E; be a complete preorder. Then,
f(@) =1.

Axiom [B1] is a normalisation axiom that characterises the decision-
makers on the set of preorder extensions that are completely decisive.
With the above axioms we are now ready to state our next result.

Proposition 2 (Characterisation of d"P). Let E €1 Ey be a preorder, and
let C(E) denote the set of complete preorder extensions of E. Then, f(E) =
IC(E)| if and only if f 1 Ey — N satisfies Additivity [B1] and Normalisation
[B2].

Proposition 2 states that a mapping from the set of preorder extensions
to the natural numbers is the decisiveness metric that counts the number of
complete preorder extensions of E if and only if the mapping satisfies the
additivity axiom [B1] as well as the normalisation property [B2]. In turn
recall that the additivity axiom [B1] structures the set of preorders (P, @, R)
(multiple selves) over which the function f embodies the additivity property
in the sense that (P, @, R) must partition the set of complete preorder ex-
tensions of E (Definition 3 and Lemma 1). In Proposition 3 below, we shall
formalise the fact that the function f(E) provides a numerical representation
of the relation > gus.

The result is demonstrated using a proof by induction on the cardinality
of the set of complete preorder extensions of an arbitrary preorder E. We
start the induction using the normalisation axiom [B2|, where we exploit the
property that |C(E)| = 1 for any complete preorder £. On the other hand,
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when E is an incomplete relation, we repeatedly use Lemma 1 together with
the additivity axiom [B1], in order to arrive at the result.

Observe that the decisiveness metric > 4up satisfies transitivity [A1], order-
extension [A2], and Hasse-diagram invariance [A4]. As a further application
of Lemma 1 and the above proposition, we state the following result.

Proposition 3. Assume that f 1 Ey — N satisfies azioms [B1] and [B2].
Then, the following statements are equivalent.

(i) Ej =quw E;

(i) J(E;) < [(E:)

(iii) There exist preorder decompositions (P, ..., Pk) and (Q1,...,Qr) of
E; and E;, respectively, such that:

(a) K > L

(b) for each h € {1,... L}, either Qp =gext P, up to a relabelling of
vertices, or P, and Q) are both complete preorders.

In accordance with Proposition 2, items (i) and (ii) of Proposition 3
formalise the fact that a mapping from the set of preorder extensions to the
natural numbers, that satisfies [B1] and [B2], is a numerical representation of
the decisiveness metric = 4ur introduced in Definition 2. In turn, from (iii) the
statement that F; is more decisive than F; according to =g4u» is equivalent to
the existence of preorder decompositions (P, ..., Px) and (Q1,...,Q) of E;
and E;, respectively - in the sense of Definition 3 - with the properties that
(a) the number of preorders decomposing FE; (the more decisive preorder)
cannot exceed the number of preorders decomposing E; (the less decisive
preorder), (b) the elements @) and P, of the decompositions of E; and
E; can be arranged so that either (), is an order extension of P, up to
relabelling of vertices, or both @), and P, are complete preorders. Observe
finally that the preorder decompositions of (iii) can readily be derived via
repeated application of the argument that is developed in the proof of Lemma
1 (see the appendix for further details).

Specifically, observe that in Figure 7 preorder E; is decomposed into @)1 =
E;U{a > d}, Qe =Trcl(E; U{a < d}), and Q3 = Trcl(E; U {a ~ d}) and
preorder F; is decomposed into P = E; U {a > b}, Po = Trcl(E; U{a < b}),
and Py = Trcl(E; U {a ~ b}). Notice that @; and P, are order extensions

20



1 #i Q3
fa | g~ d!
I\ @ |
b |
| |
C ) ‘7 C
1!
E;
@
|
1
C!
P, 1 P. 2

-
E}
BN
e

Figure 7: Illustration of Proposition 3
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of one another (i.e., they are identical preorders), () is an order extension
of P, up to relabelling, and ()3 is an order extension of P; up to relabelling.
Thus, by Proposition 3, we conclude that E; >quw F;. In fact, it is readily
verified that [C(E;)| = 7 and |C(E;)| = 11.

5 Illustrative examples from choice data

To illustrate the usefulness of studying the phenomenon of indecisiveness
within the framework of the set of preorder extensions and the decisive-
ness relations introduced in Definition 2, we consider a number of preorders
defined on six groups of goods, from the experimental study by Gerasimou
(2021). Subjects in the laboratory were presented with different menus, com-
prising a number of gift cards (up to six such cards), where each card was
worth £10. The cards pertained to two supermarket brands, two coffee-shop
chains, one bookstore and a card covering a choice of restaurants. Accord-
ingly, we write the resulting choice set as X = {Kq, ks, K¢, Ka, K f, Ky}, Where
each k; denotes a gift card. Subjects were allowed to express indifference,
indecisiveness or a strict preference over the elements in each menu. The
subject’s preference relation was then constructed by Gerasimou (2021) as
the closest preorder to the choices expressed by the respondent.

We first begin with a corollary that explores the logical relation between
the above four decisiveness orders.

Corollary 2 (Relation Between the Four Decisiveness Orders). In the set of
preorder extensions (1 Ey, = gest ), the following implications hold:

1. El idezt Ej - EfL idcomp E] — El idca'rdfcomp E]
2. Ez tdezt EJ — Ez idup E]

Recall that each of = jest and > geomp are incomplete relations, while > jeard—comp
and > 4u» being metrics, are complete decisiveness relations. From Corollary
2, it follows that the decisiveness metric > jeara—comp iS an order-preserving
function for each of the incomplete relations > geet and > geoms.'3 Likewise, it
is the case that the decisiveness metric >=4up is an order-preserving function
for >=gext. It is therefore the case that two examples of order-extensions of

13Let (S, =, =) denote a preorder. A function f : S — R is order-preserving on (S, =, =)
if for all a,b € S, a = b implies f(a) > f(b).
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Figure 9: Hasse diagrams of preorders Fs5 and Eg. The Hasse diagram of
FEs is identical to the Hasse diagram of Ey (in figure 8) up to a relabeling of
elements.

~qext that are complete, are given by either of the two decisiveness metrics.
With the help of Example 1 and a number of preorders obtained from the
experimental choice study of Gerasimou (2021), we shall establish below that
no further logical implications arise between the various decisiveness orders
of Corollary 2.

First, we consider the preorders E3 and E, of Figure 8.1* In this particular
instance, the preorder FEj3 is an extension of F, in the sense of Definition
1. For this reason, the set of preorder extensions of Fs3 is a subset 1 Fj.
Accordingly, from Corollary 2, Fs3 is more decisive than Ej according to the
four decisiveness orders of Definition 2.

’ FEs vs Ey H FEs vs Fg H FE, vs Fg H FE vs Ey
Eg > geat By Es || gest Eg Ey ||ge=t Eg Ey || gest B
Es = geomp Ey Es = geomp Fg Ey ||geom» Eg Ey = geomp Fy
E3 > geard—comp E, E5 > Jeard—comp E6 E, ~ Jeard—comp E6 Es > Jeard—comp E
Es =qur Fy Es =qur Eg Ey ~guw Fg Ey =que Es

Table 1: The Four Decisiveness Orderings at Work

14The preorders F3 and E, are respectively the preference relations pertaining to sub-
jects with identification numbers 1124 and 8801, whose diagrams are depicted on page 54
of Gerasimou (2021).
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Next, consider Figure 9 where we depict the preorders Es and Fg.'
Firstly, note that these preference relations are not comparable according
to >=gext . For example kg =° k;, while x; =% k4. On the other hand, be-
cause comp(F5) = comp(Eg) U {(kq, ka)}, it follows that Ej is more decisive
than the latter preorder according the decisiveness ordering > jcomp. In turn,
from Corollary 2, it follows that Ej is also more decisive than Eg according
to the metric > jeara—comp. It is readily verified that the set of complete pre-
order extensions C(Ej5) has 3 elements. On the other hand, from Figure 8,
we observe that T E,; has 5 elements. Because the metric = 4u» satisfies the
Hasse-Invariance Axiom [A4] and the Hasse diagram of Fj is equal to that
of E4 up to a relabeling of vertices, we deduce therefore that C(Eg) has also
5 elements. Accordingly, there results that Fs &= gur Fg.

Next, the comparison of E4 and Eg will enable us to illustrate a few more
points of interest. From the above argument and Proposition 1, there results
that Ey ~jeard—comp Fg. Furthermore, given that FEjs is more decisive than
E, according to all four decisiveness orders - in particular, F5 > jeard—comp Fy
and F3 =4 F, - as a transitive implication, there results therefore that
E3 > jeara—comp Fg and E3 =qu Eg. On the other hand, because of the rela-
belling of vertices discussed earlier, there results that £y and Fg are incom-
parable according to >4t . Because the relabeling involved renders their
comparability sets different, there also results that £y and Fg are incompa-
rable according to > geoms.

We summarize the above discussion with the help of Table 1. We also
append in the last column of the table the comparisons of the preorders
E; and E, of Example 1, using the four decisiveness relations. In this last
column, we observe that Fy > jeard—comp [, while E; =gu FEs. It is useful
to invoke the interplay between the axioms to show why Fj; is less decisive
to Fy according to = jeara—comp. Let E’' denote the preference relation where
a > b > ¢ and where d is incomparable to each of a,b,c. It follows that
E; and E’ have identical comparability graphs [A3], and from Proposition
1, that By ~jeara—comp E'. However, it is clear that Ey is an order extension
of E', and, therefore, by transitivity [A1l] and order extension [A2], we have
that Fy > jeard—comp F7.

On the other hand, it is immediate from Lemma 1 that E; has three

5These preorders are respectively the preference relations pertaining to subjects with
identification numbers 2882 and 5064, whose Hasse diagrams are depicted on page 53 of
Gerasimou (2021).
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complete preorder extensions: these are the transitive closure of respectively
EyU{a > d}, EyU{a ~ d}, and EyU{a < d} (see Figure 2). Furthermore, to
obtain the five complete preorder extensions of s, consider the incomparable
pair (b,d). Es has an incomplete preorder extension E” such that b > d and
two complete preorder extensions - one where d > b and one where b ~ d.
For the incomplete preorder, a further application of Lemma 1 enables us to
find three complete preorders that decompose E”. The additivity axiom [B1],
therefore, gives the required five complete preorder extensions of Fs. Because
E has three complete preorder extensions, if follows that E; &= gu» Fs.

Because the first two rows of the table involve incomplete decisiveness re-
lations, there invariably results incomparabilities between the various decision-
makers. By comparing the first and second rows, it comes out clearly that
>geomp 1S a more complete relation than >ge.:. Likewise, a comparison of
the third row with the first two rows provides an illustration of the order-
preserving property of the decisiveness metric > jeara—comp. Similarly, the
order-preserving property of the metric > 4up is illustrated by comparing the
first and the fourth row of the table.

By inspecting the second and fourth columns of the table we observe that
By =geomp Eg and Ey =gquw g, while Ey >=geomp Eq but By =guw Eo. From
these observations, we may therefore deduce that > jcomp and >=4u» are logi-
cally independent decisiveness relations. Furthermore, because from Corol-
lary 2 > geomp implies > jeard—comp, we may therefore note that > jeara—comp and
=qur are also logically independent decisiveness relations. We may therefore
conclude, on the basis of Table 1 and the above discussion, that there exist
no logical implications between the decisiveness orders of Definition 2 - other
than those stated in Corollary 2.

6 Concluding comments

We conclude by discussing some of the relative merits of the four decisiveness
orders vis-a-vis one another. As a matter of choosing between the various
decisiveness orders in the context of experimental and empirical investiga-
tions, one guiding principle could consist in examining the nature of the
choice set under consideration. Typically, when the choice set involves a
range of horizontally differentiated alternatives, there may result a high level
of heterogeneity in the responses of decision-makers. As such, on practical
grounds, there may be good reasons for working with either of the decisive-
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ness metrics over the incomplete orderings >=gezt and >=geomp. On the other
hand, with vertically differentiated alternatives, the incomplete orderings
may enable the researcher to compare a larger number of subjects in terms
of the indecisiveness they exhibit.

This brings us to our next point, namely the relative advantages incom-
plete decisiveness relations present over metrics. As is certainly the case in
all fields of measurement in the social sciences, there is a tradeoff between
enabling the investigator to detect finer differences in decisiveness, and be-
tween being able to determine whether one decision-maker is more decisive
than another. Namely, the incomplete relations would typically identify
a wider range of patterns of decisiveness and nonetheless would provide a
less complete ordering than the metric approaches that produce a complete
ranking of decision-makers. We therefore suggest that the researcher decides
which of a decisiveness order or metric is more suited in the context of their
investigation.

One final consideration is of a computational nature. In the context of
complex decision environments involving large numbers of alternatives, a
metric such as > jeard—comp is easily computed in empirical investigations, by
simply counting all comparable pairs of elements by the relation. The com-
putation of the decisiveness metric = 4upr is somewhat less direct. Nonetheless,
this task is computationally feasible via repeated applications of the preorder
decomposition proposed in Lemma 1 of this paper.

Appendix

Independence of the Axioms (d“4~“"? metric)

We prove that the axioms that characterise the > jecara—comp metric are inde-
pendent via five examples. To do so, we will - in each example - specify the
ground set X, and on X explicitly define some preorders in 1 Ey by omitting
(for brevity) to spell out the reflexive parts of the relevant binary relations.

« A2, A3, A4, and A5 do not imply Al. Let X = {z,y,z}. Let
Cy ={z ~y}, Cy = {z > y}, and C3 = {y > z} be preorders in
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T Ey. Suppose that =, coincides with > jeari—comp, €xcept that C is
=g4-incomparable to C3. Observe that A2, A3, and A4 are satisfied.
In addition, A5 vacuously holds. However, notice that Al is violated,
as C1 ~g Cy (by A3) and Cy ~4 C5 (by A4), and yet C; and Cjy are
=g-incomparable.

A1, A3, A4, and A5 do not imply A2. Let X = {x,y}. Let
Cr={x >y}, Cy ={zr <y}, C5 ={z ~y}, and Ey = {} be preorders
in T Ey. Suppose that =, coincides with > jeara—comp, except that Ej is
= g-incomparable to C, Cs, and C5. The resulting relation =, satisfies
Al, A3, and A4. Furthermore, it vacuously satisfies A5. However,
observe that A2 is violated, as C; is a preorder extension of Fy, and
yet C} and Ej are incomparable.

A1, A2, A4, and A5 do not imply A3. Let X = {x,y}. Reconsider
the preorders defined in the previous bullet point. Suppose that =4
coincides with > jearda—comp, except that C3 is =4-incomparable to C'; and
C5. Notice that A1, A2, and A4 are satisfied. Moreover, A5 vacuously
holds. However, observe that A3 is violated, because C3 and C have
the same comparability graph, and yet they are incomparable.

Al, A2, A3, and A5 do not imply A4. Let X = {z,y,z}. Let
Ci={zx>=yuax>z}, Co={y>=x2>z}, Cs={y = x,y >z}
Ci={x>=y,z=y},Cs={z>x,2z>=y},and Csg = {x = 2,y = 2z} be
preorders in T Ey. Suppose that =, is identical to > jeard—comp, €xcept
that (i) C7 and Cy are incomparable to Cs, Cy, Cs, Cs, (ii) Cs and Cy are
incomparable to C,Cy, Cs5, Cs, and (iii) C5 and Cg are incomparable
to C1,Cs,C3,Cy. Observe that A1, A2, and A3 hold. Furthermore,
A5 vacuously holds. However, notice that A4 is violated, because A4
requires the inverted V-shaped posets to be equally decisive, and yet
C1, C3, and Cj are incomparable. Similarly, A4 requires the V-shaped
posets to be equally decisive, and yet Cy, Cy, and Cg are incomparable.

A1, A2, A3, and A4 do not imply A5. Let X = {x,y, z,w}. Let
Cr={x>w}, Co={z =z}, Cs={z>w,y>w}, Co={x>z,y >
w} be preorders in T Fy. Suppose that =4 is identical to = geard—comp,
except that C3 is incomparable to Cy. Observe that >, satisfies A1,
A2, A3, and A4. However, noticed that A5 is violated, because (i)
Cy ~q Oy (by A4), (ii) y > w is a passive pair for both C and Cs, (iii)
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C3 = C1U{y = w} and Cy = CoU{y > w}, and yet Cj is incomparable
to 04.

Independence of the Axioms (d"? metric)

Consider a two-element choice set X = {x,y}. Throughout, we omit (for
brevity) to specify the reflexive parts of the preorders on X. Define four
preorders on X as follows: F} = {z > y}, Fy = {x <y}, F3 = {z ~ y}, and
Ey = {}. The set of preorder extensions of E is thus 1 Ey = {F}, F, F3, Ey}.
Let f 1 Fy — N be a function that measures the degree of indecisiveness of
a preorder in T Ey. Consider the following three specifications.

[ satisfies Normalisation [B1], but violates Additivity [B2]: let
f(Fl):17 f<F2):]-7 f(F3):17and f(EU):5

[ satisfies Additivity [B2], but violates Normalisation [B1]: let
f(Fl):27 f(FQ):Sv f(F3):47 and f(E()):g

Proof of Proposition 1

Necessity. The necessity part is readily verified, and thus omitted. Below
we prove the sufficiency part.

Sufficiency. Let >, denote some decisiveness relation on the set of
preorder extensions. Assume that =, satisfies axioms A1-A5. We want to
show that E; >, E; whenever |[comp(E;)| > |comp(E;)|. We divide the
proof in three steps.

Step 1: Let Ext(Ey) denote the set of poset extensions of an n-element
antichain. Then, there exists a surjective function f :T Ey — Ext(Ey) such
that, for all E;, E]‘ et Ey, if EJ‘ ~q4 Ej;, then f(E]> ~d f(Ez)

Proof. Let E; be a preorder in T Ej that is not a poset. Denote by p(FE;)
a poset constructed as follows: p(FE;) is identical to E;, except that every

non-singleton indifference class in E; is turned into a chain in p(E;).
Define a function f :1 Ey — Ext(FEy) as follows. For any E; €1 Ey, let

E; if F; is a poset in T Ej
p(E;) if E; is a preorder in 1 Ey that is not a poset

J(E) == {
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By construction, the image of f is the set Fxt(Ey) of poset extensions.
Hence, f is surjective. It remains to show that for all E;, E; €1 Ey, if
E; =4 E;, then f(E;) =4 f(E;). Assume that E; >, E;. We distinguish
three cases.

Case (i): assume that both E; and E; are posets in 1 Ej. Since f(E;) = E;
and f(E;) = Ej, then f(E;) = E; =4 E; = f(E;), as desired.

Case (ii): suppose that both E; and Ej are preorders in 1 Ej that are not
posets. By comparability graph invariance [A3], E; ~4 p(E;) = f(E;) and
E; ~q p(E;) = f(E;). Since, by assumption, E; =4 E;, then f(E;) ~q4 E; =4
E; ~q4 f(E;), which, by transitivity [Al], implies that f(E;) =4 f(E;), which
is the desired result.

Case (iii): assume WLOG that E; is a poset in 1 Ey and Ej is a preorder
in 1 Ep that is not a poset. By similar arguments to those of case (ii), it
follows that f(E;) =4 f(E;). O

By Step 1, for every preorder E; €1 Ej that is not a poset, there exists
a poset p(E;) that is as decisive as preorder E;. This result enables us to
complete the proof by considering the set of poset extensions Fxt(Ey), which
- as discussed in the main body - is a subset of the set T Ej of preorder
extensions. From Brualdi, Jung, and Trotter (1994), (a) (Ext(Ep), =gest) is
a ranked poset and (b) every poset E; in (Fxt(Ey), =g4-t) has at least two
lower covers.

Step 2: For any E;, E; € Ext(Ey) such that [comp(E;) | = [comp(E};) |,
there holds F; ~q Ej.

Proof. Let E;, E; € Ext(Ey) be such that |comp(E;)| = |comp(E;)|. We
prove that E; ~4 E; by induction on the cardinality of comp(£;) and comp(E}).

Base case: assume that [comp(E;)| = |comp(E;)| = 1. Notice that all
posets with one comparability have the same Hasse diagram that is given by
a 2-element chain and an (n—2)-element antichain. Hence, by Hasse diagram
invariance [A4], E; ~4 E;.

Inductive hypothesis: suppose that for any FE;, E; € Euxt(E,) such

that [comp(E;)| = |comp(E;)| = ¢, there holds E; ~4 E; for all 1 < ¢ <
n(n—1)
e
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Consider any E;, E; € Ext(Ep) such that |comp(E;)| = |comp(E;)| =
c+ 1. We want to show that F; ~g ;.

Let Ey € Ext(Ep) be such that |comp(Fyg)| = ¢ and E; =gext Ej. By
Brualdi, Jung, and Trotter (1994), every poset E; has a lower cover in
(Ext(Ey), =ge=t). Hence, Ej exists. Moreover, since |comp(E;)| = ¢+ 1,
lcomp(Ey) | = ¢, and E; =4t Ey, then there exists a pair of distinct alter-
natives (a,b) € X x X such that E; = Ey U {a > b}. We distinguish two
cases.

Case (a): suppose that (¢ > b) € E; and E; has a lower cover Ej in
(Ext(Ep), = ge=t) such that E; = E;U{(a > b)}. Observe that |comp(Ey) |
= |comp(E;) | = c¢. Hence, by the inductive hypothesis, Ej ~4 E;. Since -
by assumption - E; = E, U{(a > b)} and E; = E; U {(a > b)}, then - by
independence [A5] - it follows that E; ~4 E;, which is the desired result.

Case(b): assume that either (i) (a > b) ¢ E; or (ii) (a > b) € E; and E;
does not have a lower cover Ej in (Ext(Ey), = g4e=t) such that E; = E;U{(a >
b)}. Since E; € Ext(Ey), then it has a lower cover. Now construct another
poset in Ext(Ey) - call it Ej - that satisfies the following properties: (1)
Ej has the same Hasse diagram as E;, and (2) the alternatives in E’j are

relabelled in order to make sure that Ej has a lower cover - call it El - such
that E; = E; U {(a > b)}. By Hasse diagram invariance [A4], E; ~q4 E;.
By the same arguments as those used in case (a), Ej ~ E implies that
E, = ExU{a > b} ~g E;U{(a > b)} = E;. Hence, E; ~4 E;. Since,
by Hasse diagram invariance [A4], E; ~4 E;, then - by transitivity [A1] -
E; ~4 Ej, as desired. L]

Step 3: For any E;, E; € Ext(Ep) such that [comp(E;)| < [comp(E};) |,
there holds E; =4 F;.

Proof. By Step 2, for any E;, E; € Ext(Ep) such that |comp(E;) | = [comp(E}) |,
there holds E; ~4 E;. Consider now any two posets E;, E; € Ext(E,) such
that |comp(E;) | < |comp(E;)|. We want to show that E; >, E;. We distin-
guish two cases.

Case (a): suppose that E; is an order extension of E;. Then, by order-
extension [A2], it immediately follows that E; >, E;.

Case (b): suppose that Ej; is not an order extension of E;. By Brualdi,
Jung, and Trotter (1994), (Ext(Ep), = qet) is a ranked poset. Hence, there ex-
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ists a maximal chain M in (Ext(Ep), = geat) such that F;, E,, € M, E,, > jeat
E;, and |comp(E,,)| = |comp(£};)|. By order-extension [A2], E,, >4 E;
and, by Step 2, E,, ~q E;. Therefore, by transitivity [Al], it follows that
E; =4 E;, which is the desired result.

]

By Step 2 and Step 3, =4=> jeard—comp. This concludes the sufficiency part
of the proof.

Proof of Lemma 1

Let E €1 Ej be an incomplete preorder. Since F is not complete, there exists
a pair (z,y) € X x X such that z and y are not comparable in E. Given a
preorder S = (X, >5) and a pair of alternatives a,b € X such that a and b
are S-incomparable, let Trcl(S U {a =g b}) denote the transitive closure of
SuU {a s b}

Define three distinct preorders P, Q, R as follows.

P:=Trcd(EU{x = y})
Q:=Trc(EU{y > x})
R:=Trcd(EU{x ~y})

We first verify that PN Q N R = E. There are three cases to consider.

Case (1): = > y and y = x are passive pairs for E. This necessarily
implies that, for all z € X \ {z,y}, * > z if and only if y > z; likewise,
z = z if and only if z > y. Therefore, case (1) implies that * ~ y is a
passive pair for £. Consider first x > y. Observe that the transitive closure
of EU{x > y} is equal to EU{z = y} itself, because x > y is a passive pair
for E. Likewise, it is the case that Trcl(E U {x < y}) = EU {z < y} and
Tre(EU{z ~y}) = EU{z ~ y}. Asa result, it follows that the intersection
of P, ), and R equals E.

Case (2): = > y is a passive pair for £ and y > x is not a passive pair
for E. Observe that this necessarily implies that x ~ y is not a passive pair
for E.1® As argued in the case above, the transitive closure of EF U {z = y}

160bserve WLOG that the case where o = y is not a passive pair for £ and y = z is a
passive pair for F is treated analogously.
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is equal to EU {x > y}, because x > y is a passive pair for £. On the other
hand, Trel(EU{y = z}) = EU{y > 2} UT, where T is the resulting set of
ordered pairs from X x X that are added in the transitive closure. Likewise,
the same set 1" characterises the transitive closure of E'U {zx ~ y}: that is,
we have that Trcl(EU{y ~x}) = EU{y ~ 2} UT. Therefore,

PNQNR=[Trcd(EU{x=y})|N[Trc(EU{y > z})]N[Trc(EU{x ~ y})]
=[EU{z=y}N[EU{y =z} UT|N[EU{y ~2}UT]

As a result, PN Q N R = E, because the pairs of alternatives in T are
not comparable in P.

Case (3): x = y is not a passive pair for F and y > x is not a passive
pair for E. Observe that this also implies that x ~ y is not a passive pair for
E. For sets T1,Ty, C X x X, from the argument developed in case (2) above,
we have:

Tr(EU{z -y})=EU{z >y} UT)
Tr(EU{y = z})=EU{y > 2} UT
Tr(EU{y~z})=EU{zx~y} UT; UT

where it must be the case that T3 N T, = (). As a result, it follows again
that PNQNR = E.

Observe that cases (1), (2), and (3) above exhaust all possibilities and
are mutually exclusive. This therefore establishes that PN QN R = F.

We are now ready to prove that (C(P),C(Q),C(R)) forms a partition of
C(E). It is readily verified that, by construction, C(P) N C(Q) = C(P) N
C(R)=C(Q)NC(R) =0.

Hence, it remains to show that there is no complete preorder F' €1 Ej
such that F' ¢ C(P)UC(Q)UC(R) and yet F' € C(E). Suppose not.

Since F' is a complete preorder, then it must be able to order (z,y).
Suppose WLOG that x = 3.1 Since I and P order (z,y) in the same way
and F' € C(E) \ C(P), then there must be some other pair of alternatives
(z,w) that F' and P order differently. We distinguish two cases.

1"The cases where 2 ~p y and y =r z are similarly handled. See in particular the first
part of the proof.
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Case (1): o > y is a passive pair for F. That is, P = Trcl(F U {z >
y}) = EU{zx > y}. Since F € C(E) and = >p y, then it means that
a >=p b= a>pb, implying that F' is a preorder extension of P. However,
this contradicts the fact that there is a pair of alternatives (z,w) that F' and
P order differently.

Case (2): x > y is not a passive pair for E. Therefore, EU {x > y} C
Trcl(EU{z > y}) = P. This means that a necessary condition for resolving
the incomparability between x and y by having x > y is to resolve some other
incomparabilities. Specifically, let T := Trcl(E U {z = y}) \ (EU{z > y})
denote the set of extra ordered pairs that result from taking the transitive
closure of EU{z > y}. Hence, for any (v = w) € T and any order extension
E' of E, it follows that, if =g ¥y, then v =g w. Therefore, since by
assumption x >p y and F' is an order extension of E, then it follows that
v >=p w. Recall that P = EU {x > y} UT. But then this implies that there
is no pair of alternatives (z,w) that F' and P order differently. The latter
produces the desired contradiction.

Hence, there is no complete preorder F' €1 FEy such that F' ¢ C(P)U
C(Q)UC(R) and yet F € C(E). Thus, (C(P),C(Q),C(R)) forms a covering
of C(E). Observe that (C(P),C(Q),C(R)) is also a partition of C(FE), as
from the choices of P, (), and R, there cannot be a complete preorder in the
covering that is not an extension of C(F). This concludes the proof of the
lemma.

Proof of Proposition 2

Necessity. It is readily verified that, if f counts the number of complete
preorder extensions, then [B1] and [B2] hold.

Sufficiency. Assume that f satisfies Additivity [B1] and Normalisation
[B2]. Let n* denote the number of complete preorder extensions of an n-
element antichain. Define a finite set

S(T Ey) := {s € N : there is a preorder E' €1 Ej such that s = |C(F)|}

containing all the natural numbers s that have the property that there is
a preorder E such that the number of complete preorder extensions of E is
exactly equal to s. We observe that min S(1 Ey) = 1 and max S(T Ey) = n*.
For convenience, denote the elements of S(1 Ey) by {s1,...,Si...,Su},
where s1 =1, sy =n*, and s; < s;41 foralli € {1,..., M — 1}, .
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Let E €T Ey be a preorder, and let C(F) denote the set of complete
preorder extensions of E. We want to show that f(E) = |[C(E)|. We argue
by induction on |C(E)| € {s1,..., 8, ..., Sm}-

Base Step: assume that |[C(E)| = s; = 1. Then, F is a complete pre-
order, and has one complete preorder extension, i.e., itself. By Normalisation

B2), f(E) = 1. Thus, f(E) = [C(E)|.
Inductive Step: assume that f(E) = |C(E)| =s; forall 1 <i < M.

Consider a preorder E €1 Ej such that |C(E)| = s;41. We want to show
that f(E) = |[C(E)| = sit1.

Let E €1 Ey be such a preorder. Since |C(E)| = s;41 > 1, then there
exists a pair of alternatives (x,y) such that x and y are not comparable at F.
Let P:=Trc(EU{z > y}), Q :=Trcd(EU{z < y}), and R := Trcl(E U
{z ~ y}). By Lemma 1, (C(P),C(Q),C(R)) forms a partition of C(E). By
Additivity [B1], f(E) = f(P)+ f(Q)+ f(R). Since, by construction, P,Q, R
are preorder extensions of E, then max{|C(P)l,|C(Q)|,|C(R)|} < s; < Sit1-
Therefore, by the inductive step, f(P) = |C(P)], f(Q) = |C(Q)], and f(R) =
C(R)|. Hence, [(E) = |C(P)| + 1C(Q)] + [C(R)|.

On the other hand, suppose, by contradiction, that [C(E)| # |C(P)| +
IC(Q)| + |C(R)|. Recall that, by Lemma 1, (C(P),C(Q),C(R)) forms a par-
tition of C(E). Hence, it cannot be that |C(E)| > |C(P)| + |C(Q)| + |C(R)|
or |C(E)| < C(P)| +|C(Q)] + IC(R)|. Therefore, [C(E)| = c(P)| +|C(Q)] +
IC(R)| = f(F), which is the desired result.

Proof of Proposition 3

By Proposition 2, (i) <= (ii). Hence, it remains to show that (ii) <= (iii).
We begin by showing that (ii) = (iii). Assume that (ii) holds. Since (i) <=
(ii), then |C(E;)| = f(E;) < f(E;) = |C(E;)|. Let K = f(£;) and L :=
f(E;). Let C(E;) = {ij, . ,ij} and C(E;) = {C{",...,C¥'} be the set
of complete preorder extensions of F; and L, respectively. Define Q) :=

ij for all h € {1,...,L}. Observe that, from Szpilrajn (1930)’s theorem,
(Q1,...,Qr) so defined is a preorder decomposition of E;. Similarly, define
P, :=Cy forall h € {1,..., K} and observe that (P, ..., Px) is a preorder
decomposition of E;. It remains to show that (iii.a) and (iii.b) hold. Since
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(i) holds, it follows - by construction - that L = f(E;) < f(E;) = K. Hence,
(iii.a) holds. On the other hand, both P, and Q) are complete preorders.
Hence, (iii.a) holds as well. Therefore, we have shown that (ii) = (iii).

In the other direction, we now show that (iii) = (ii). Assume that (iii)
holds. Let (P, ..., Pk) and (Q1,...,Qr) be preorder decompositions of F;
and E;, respectively, where P, and (), need not be complete preorders. By
definition of preorder decomposition, we have:

IC(E;)| = IC(Qu)| + -+ +1C(Qr)| (5)
IC(E)| = [C(P)] + - +[C (Px)] (6)

Since (iii) holds and K > L, we have that - for each h € {1,...,L} -
either ), >4ext Pp, up to a relabelling of the vertices, or P, and @)} are
both complete preorders. This implies that |C (Q)| < |C (P,)| for each h =
{1,...,L}. In the light of equation 5, equation 6, and the above inequalities,
it follows that |C(E;)| < |C(E;)|. That is, E; >4 E;. Hence, we have shown
that (iii) = (i). Since (i) <= (ii), then we have also shown that (iii) = (ii),
which is the desired result.
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