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Abstract

One large class of relations used in the measurement of social welfare
and risk consists of relations induced by finitely generated cones. Within
this class, we develop a general approach to investigate the ordering of
distributions—an approach that does not require the prior derivation of a
numerical representation of the order relation. We provide an equivalence
between the statement that two distributions x and y are ordered, and (1)
the possibility of expressing x — y as a positive combination of a subset
of linearly independent vectors from the generators of the cone, (2) the
existence of a relation defined on a simplicial cone such that = and y are
ordered by this latter relation, and (3) the existence of a generalized inverse
G of the matrix whose columns generate the underlying cone, such that
the product of G and the vector & — y results in a non-negative vector.
The results are illustrated in the context of distributional comparisons on
socioeconomic data.
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1. Introduction

While in the standard theory of individual choice a preference relation is taken
to be transitive and complete, a social welfare ordering is typically not assumed
to order every pair of social states. Likewise, in the theory of choice under risk,
a preference relation does not order all lotteries. Thus, when ordering distribu-
tions in terms of social welfare or risk, the underlying preference relation is often
assumed to take the form of a preorder; that is a reflexive, transitive, and pos-
sibly incomplete relation. As recently emphasized by Magdalou (2021), many
(if not most) incomplete preorders studied in the fields of distributional analy-
sis and choice under risk, arise as order relations induced by finitely generated
cones. In applied work involving incomplete preference relations, it is therefore
of central importance to derive a numerical implementation criterion, or equiv-
alently a multi-utility representation, for investigating the ordering of a pair of
distributions. However, as argued by Ok (2002), the difficulty of finding such a
representation is rooted in the incompleteness of the order relation. At an abstract
level, the derivation of such a criterion requires the researcher to identify a number
of complete order extensions, with the additional requirement that the intersection
of these complete relations produces the social welfare, or risk, ordering.

Thus, the purpose of this paper is to develop a new approach to investigate
the ordering of distributions defined on finitely generated cones—an approach that
does not require the prior derivation of a numerical / multi-utility representation
of the order relation. Examples where the approach developed in this paper
may be applicable include widely used relations, such as first and second order
stochastic dominance, the Lorenz inequality ordering and the Hammond order
(Gravel, Magdalou and Moyes, 2021) used to compare distributions defined on
ordinal data. The approach developed in this paper is appealing in applied work,
as the same set of criteria we develop can be applied within the entire class of order
relations defined on finitely generated cones, thus side-stepping the often complex
task of finding a numerical representation of each particular relation within the
class.

The main result of this paper is a theorem that provides an equivalence between
four statements: (i) the fact that two distributions = and y are ordered by a
relation defined on a finitely generated cone, (ii) the possibility of expressing
x — y as a positive combination of a subset of linearly independent vectors from
the set of generators of the cone, (iii) the existence of a simplicial relation (a
relation defined on a simplicial cone), such that = and y are ordered by this latter



relation, and (iv) the existence of a generalized inverse G of the matrix whose
columns are the generators of the underlying cone, such that the product of G
and the vector x — y results in a non-negative vector.

The significance of the result is as follows. Call the relation defined on the
finitely generated cone the mother relation. The simplicial relation is shown to
be coarser than the mother relation, in the sense that the former only enables
the researcher to order a subset of the pairs of distributions that are comparable
in the mother relation. Nonetheless, the simplicial relation is easily characterized
by expressing x — y as a positive combination of a subset of linearly independent
vectors from the set of generators of the cone. This set of vectors (also known
as a positive basis) fully determines the simplicial relation or, equivalently, the
associated simplicial cone. Furthermore, the same generators of the simplicial cone
provide all the information needed in order to construct the generalized inverse G
of the matrix of the generators of the cone of the mother relation. The generalized
inverse in statement (iv) in turn provides a new empirical criterion, simple to
implement, in order to investigate the comparability of a pair of distributions x
and .

As a key step for making this approach appealing in applied work is to be able
to find a positive basis, the paper also discusses various methods for obtaining the
set of linearly independent vectors that positively span x — y. We also note that
finding such positive bases is routinely required in linear programming problems,
and we adapt to the context discussed in this paper one such algorithm due to
Schrijver (1986). Finally, to illustrate the practical relevance of the methodology
introduced in this paper, we present an illustrative application where the purpose
is to compare distributions of self-assessed health in a group of ten European
countries.

The paper lies in the intersection of three main areas of literature. Chiefly,
the paper contributes to the literature on order relations defined on convex cones,
starting with Marshall, Walkup and Wets (1967). This literature has further been
specialized and extended by Magdalou (2021), who establishes the fundamental
role the dual cone plays in deriving the underlying set of order-preserving func-
tions. This is an important result, as it provides an analytical method of deriving
a numerical representation of the relation, via a characterization of the extreme
rays of the dual cone. The author however comments that this result (Proposition
9, Magdalou 2021) can be difficult to apply in practice, since "...In general, finding
an analytical solution for the extreme points is far from trivial". In comparison,
the criteria proposed in this paper are simple to implement, and draw on effi-



cient computational methods from the linear programming literature. A further
contribution, Abul Naga (2022), discusses instances where the numerical repre-
sentation of the incomplete relation may be recovered from the Hilbert basis of
the underlying cone. The present paper generalizes Abul Naga (2022) in that the
same results may be obtained in a wider class than the so-called class of maximal
linearly independent Hilbert bases considered by this author.

A second literature the paper builds on is the utility representation of incom-
plete preferences, starting with Aumann (1962), and Ok (2002), where our present
focus is on obtaining new criteria for ordering distributions in the specific context
of relations defined on finitely generated cones. A third literature the paper draws
on is centred around Farkas lemma, and the characterization of positive solutions
of systems of linear equations. There, we draw on results pertaining to generalized
inverses of matrices (e.g. Ben-Israel and Greville, 2003 and Abadir and Magnus,
2005) in order to associate the comparability of a pair of distributions with the
existence of positive solutions of a system of linear equations. Finally, from a
purely practical angle, the paper draws on a literature related to computation
with convex cones. Efficient algorithms for finding positive bases of cones are
routinely required in the field of linear programming (Schrijver, 1986), and these
algorithms also come handy for applying the criteria introduced in this paper for
comparing distributions. To the best of our knowledge however, the use of gen-
eralized inverses and linear programming methods in order to provide criteria for
ordering distributions, as done in this paper, is novel.

After reviewing key concepts and definitions in Section 2, the purpose of Sec-
tion 3 of the paper is to characterize the finite set of simplicial relations such that
one such relation in the set provides a criterion for investigating whether two dis-
tributions = and y are comparable. Section 4 contains an illustrative application
of the methodology, while Section 5 concludes the paper. An appendix contains
proofs of the main results of this paper.

2. Order relations and convex cones

We begin this section by defining order relations induced by convex cones. We
next review some properties of finitely generated cones, that will be key to the
approach we develop to investigate the comparability of pairs of distributions.
The approach we will pursue in this section is to define a general relation > on a
convex cone C in R%. Implicit in our discussion throughout the paper, is that each
vector in C takes the form of a difference between two distributions pertaining to a



variable defined on d ordered socioeconomic states. The discussion could equally
be framed in terms of lotteries defined on a finite number of states of nature.

In what follows the sets Z, Q and R respectively denote the integers, rationals
and real numbers. We let Z, := {0,1,2,...} denote the non-negative integers,
and we likewise define the sets Q, and R,. The notation a is used to denote
a vector, A denotes a matrix, while A is taken to denote a set. Let u’ denote
the transpose of a vector u € R?, and let 0; denote a vector of d zeroes. If u =
(u1,--- ,uq) and x = (x1,---,74) are two vectors in R? we denote the inner
product uixy + - - - + ugry by u - x.

A relation = on R? is called a preorder if it is transitive and reflexive, and a
partial ordering if it is transitive, reflexive and antisymmetric !. A relation > is
additive if for all z, 7y, 2 € RY, = y implies  + 2z = y + z. Finally, the relation >
is scale invariant if for all z,y € R?, and for all A\ > 0, there holds = > y implies
Az = Ay. Following Marshall et al. (1967), an additive and scale invariant partial
order relation > may be associated with a pointed convex cone > C C R?, whereby
x = y if and only if x — y is a vector that belongs to the convex cone C. Under
such circumstances, we more simply refer to = as an order relation induced by a
convex cone, or a cone ordering.

A cone C is said to be finitely generated if it arises as the positive span of a finite
set of vectors. Particular types of finitely generated cones, known as simplicial
cones, and the associated order relations, will play an important role in this paper.
We define these concepts next.

Definition 1 (i) Let V:= {vl,... v™} denote a finite set of vectors in RZ.
The positive span of V is the set of all positive linear combinations of v', ... v™:

cone(V) := {\v' 4+ + X\pv™ : Ap, .. A €RL Y (2.1)

and the set V is said to positively span a finitely generated cone C if cone(V) = C.
(ii) A cone C = cone({v?,...,v™}) C R? is said to be simplicial if m = d and
v, ..., v™ are linearly independent vectors.
(i1i) An order relation = on R? is said to be simplicial if there is a simplicial
c%ne C C R? such that x = y if and only if x —y € C for all vectors x and 1y in
R

'A relation > on R? is called transitive if x = y and y > z imply x = z for all z,y, z € R,
reflexive if x = x for all z € R?, and antisymmetric if x = y and y = x imply = y for all z,y €
R4,

2A cone C in R? is said to be pointed if for all € C such that x, —z € C there holds = = 0.



Let P denote a d xm real matrix and b a vector in R?. There are two important
results related to cones that we shall make extensive use of, namely Farkas lemma
and Carathéodory’s theorem. First however, we recall some concepts and results
related to the solvability of a system of linear equations of the form Pv = b
(where the unknown vector v need not be positive). We define the rank of P to
be the number of linearly independent columns of P, and we write this number
as rank(P). The system Pv = b is said to be solvable if there is a vector w in R™
such that Pw = b. Such a solution w exists if and only if P and the augmented
matrix ( P b ) have identical rank, equivalently if b is a linear combination of
the columns of P. Under such conditions, it is possible to find an m X d matrix
G such that w = Gb is a solution of the system Pv = b. We call the matrix G a
generalized inverse of P. We refer the reader to chapter 10 of Abadir and Magnus
(2005) for further discussion on generalized inverses in relation to the solvability
of systems of linear equations.

We next specialize the above discussion to investigating the existence of non-
negative solutions of the system Pv = b. Geometrically, we are interested in
conditions that establish that the vector b lies in the cone generated by the m
columns of the matrix P. A first result is provided by Farkas lemma.

Lemma 1 (Farkas’ lemma) Let P denote a d xm real matriz and b a vector
in R?. Then exactly one of the following alternatives hold:

(1) The system of linear equations Pv = b has a solution w € R'}".
(2) There is a vector ¢ in R such that ¢ P < 0,, and c-b > 0.

Farkas lemma is useful to investigate the existence of positive solutions w in
association with a system of linear equations Pv = b. The lemma states that
exactly one of the two statements (1) and (2) must be true. If (1) holds, it
is possible to express b as a positive combination of the columns from P (with
weights given by the vector w). In the alternative (2), the system Pv = b does
not admit positive solutions, and there exists a vector ¢ in d-dimensional space
such that ¢-b > 0 and ¢ - p' < 0 for each of the m columns p’ of P. Algorithms
are available for computing the vector ¢ when the alternative (2) holds, and we
shall discuss in Section 3 one such algorithm that appears in Schrijver (1986).

The second result we shall make extensive use of is known as Carathéodory’s
theorem.

Lemma 2 (Carathéodory’s theorem)  Let P:= {p',...,p™} denote a finite
set of vectors in d-dimensional space RY, and define the cone C = cone(P). If b is



a point in C, then b belongs to a cone generated by a linearly independent subset
of vectors from P.

In simple terms, Carathéodory’s theorem says that if a vector b belongs to the
cone C, then b can be expressed as a linear combination of d linearly independent
vectors from the set P, with the property that the weights defining the linear
combination are non-negative. This result, together with Farkas lemma, underlies
the approach developed in this paper.

We now turn our attention to the comparison of certain types of vectors in
R¥, that we shall refer to as distributions. Let ]ID’fL = {z € Zﬁ cxy o+ T
= n}, denote the set of distributions of a given sum total, defined on k ordered
socioeconomic states, where ¢ = 1 denotes the worst socioeconomic state, and
i = k indexes the highest state *. In the empirical application we shall consider
for instance, the European statistical agency EUROSTAT collects data on self-
assessed health, asking respondents in each participating country to choose one
of five possible assessments: very bad, bad, average, good, or very good. The state
¢ = 1 then corresponds to a very bad health, while i = k pertains to a state of
being in very good health.

When we consider a difference of vectors pertaining to a pair of distributions
o and y in DF, the resulting vector x — y belongs to the following subspace S* of
R¥:

Sk::{SGRk:81+52+"'+5k:0}. (2.2)

Because each vector in S¥ sums to zero, it is important to observe that the max-
imum size of a linearly independent set in S* is equal to k — 1 (rather than k);
that is, the subspace S¥ has dimension equal to k — 1.

The preferences of a social planner are assumed to be given by a relation >,
associated with a cone Cr C RF. Following Magdalou (2021), the cone Cr is
finitely generated by a set of vectors 7, known as the set of transfers. We can
think of each vector in the set of transfers as providing a direction of increasing
social preference. That is, a finite set of vectors

T:={t',....t"} (2.3)

is a set of transfers if for all t € T,

[T1] t can be written as the difference between two distributions in D, and

3For instance, if #! = (1200 1) , then ! is an element of D} , and we adopt the convention
that the frequency distribution 22 = (1/4 2/4 0 0 1/4) is an element of DS.



[T2] t €7 implies —t ¢ 7.

Observe from [T1] that each ¢t € 7 is a vector in S¥, and from [T2] that the
cone Cr := cone(7) is pointed. It follows therefore from [T1] and [T2] that the set
of transfers 7 positively spans a pointed rational cone Cy := cone(7), associated
with the relation >7. Furthermore, because the cone Cr is pointed, the matrix
T .= ( tto...ogm ) whose columns are the m vectors ¢ in the set of transfers,
is a mazimum rank matrix in S*. That is,

rank(7) =k — 1. (2.4)

Finally, let z and y be two distributions in ¥, such that for Ay,..., A, € R, and

vectors t1,...,t™ € T, we can write z —y = >_ A\t°. Then it is the case that the
s=1

vector x — y belongs to the cone Cr, and that x =, y *.

Below, we provide an example of an order relation defined on a finitely gen-
erated cone, and the associated set of transfers. The relation was introduced
by Gravel Magdalou and Moyes (2021), and was further discussed in Magdalou
(2021).

Example 1 (The Hammond inequality order)

Let 2,y be two distributions in DF. Following Gravel et al. (2021), we say
that x is obtained from y via an egalitarian Hammond transfer if for indices
h < i < j <[ in the index set {1,...,k} there holds =z, = y, — 1, z; = y; + 1,
rj =y;+1, 2y =y —1and z,, = y,, for all m # h,i,5,[. When 7 = j, this
definition specializes a Hammond transfer to the form x, =y, — 1, x; = y; + 2,
x; =y — 1 and x,, =y, for all m # h,i,l.

When taking the simple case where there are & = 4 socioeconomic states, we
may accordingly define the set of transfers associated with this inequality order
as comprising the following five vectors:

“In the case where z and y are integral vectors in DX and the set of transfers 7 contains a

Hilbert basis of the cone Cr, it is furthermore possible to obtain a representation z—y = > 04t*
s=1
with suitably chosen weights 01, ...,0,, € Z;. We refer the reader to Magdalou (2021), who

defines such sets of transfers 7 as being minimal.
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and we say that x is more egalitarian than y if x — y is an element of the cone
generated by the set of transfers, equivalently, if x — y € cone(7).

Now consider a hypothetical vector z = (—3 2 5 —4)". This vector is constructed
as the sum t' + 2+ 3 + t*, where #' is the i-th vector in the set of transfers 7,
and accordingly z is an element of the Hammond inequality order cone. 0.

3. Comparing distributions

k
ny

Consider a pair of distributions x and y in D, and let z = x — y. Consider the

linear system of equations

z = ptt 4 p t" with t' - €T (3.1)
= Tp,

where z is a k-dimensional vector given by the data, T' = (¢!, ..., t™) is the matrix
whose columns are the m elements of the set of transfers and p = (p;,...,p,,) is a
m-dimensional real vector of unknown coefficients. From (2.4), we have that 7" is
a maximum rank matrix in the subspace S¥. It follows therefore that for any z €
Sk, there holds that rank(7T") = rank( T =z ) = k — 1, so that the necessary and
sufficient condition for the solvability of the linear system (3.1) is met for any such
vector z € S¥. As such, there must exist a vector ;1 € R™ and a generalized inverse
G of the matrix 7" such that z = Tp if and only if Gz = . Our interest being in
investigating whether x =7 y, we seek however a non-negative solution ;i € R
of the linear system (3.1). Also, for the purpose of undertaking distributional
comparisons in applied work, we shall require a form for the generalized inverse
G.

Let J := {i1,...,7x—1} denote a subset of indices from the set {1,...,m}, and
define the following subset of the set of transfers:

T, = {til’...7tikfl; tHeT foraﬂjGJ}. (3.2)

Construct the matrix T := (% ... t%*-1) whose k — 1 columns are the elements
of the set 7;. When the matrix 7 is of maximum rank in the subspace SF,
equivalently when the vectors from the subset 7 are linearly independent, we say
that the set of indices J is simplicial. We also define the cone

Cr

J

:= cone (1Y), (3.3)



and, following Definition 1, we say that Cr, is a simplicial cone. We associate with
Cr, arelation =7, such that for any pair of distributions z and y in Df there holds
x =7, y if and only if 2 — y is an element of the simplicial cone Cr,. Underlying
the following result is Carathéodory’s theorem.

Lemma 3  Let x and y denote two distributions in DF . In relation to the
statements below, the implications (i) = (i1) = (iii) hold.

(13) = — y is a positive combination of a linearly independent subset of vectors
from the set of transfers (2.3).

(1ii) There is an order relation =, on a simplicial cone Cr, C Cr, such that
T =T,y

Observe that because the cone Cr, of Lemma 3 is simplicial, there results from
Definition 1 (4i7) that the relation >, is a simplicial order relation. Observe also
that because the cone Cr, is constructed from a subset of & — 1 < m vectors
from the set of transfers, there results that the order relation >, is less complete
that >=7. That is, there are instances where a given simplicial subset 7'; does not
positively span a vector z that belongs to the cone Cr. We illustrate the above
discussion with the following extension of Example 1.

Example 2 (The Hammond inequality order, continued)

Return to Example 1 that discusses the Hammond inequality order in the
context of k = 4 socioeconomic states. We first construct the matrix 7" associated
with the set of transfers (2.5) as follows

-1 0 -1 -1 -1
1 -1 0 2 2
= 1 2 2 0 -1 (3-4)

-1 -1 -1 -1 O

5!
There are 391 10 sets J comprising £ — 1 = 3 indices from the index set

{1,2,3,4,5}, pertaining to the columns of the matrix 7. These are J; = {1,2,3},
Jo = {1,2,4}, J3 = {1,2,5}, Jy = {1,3,4}, J5 = {1,3,5}, Jo = {1,4,5}, J; =
{2,3,4}, Js = {2,3,5}, Jog = {2,4,5} and Ji9 = {3,4,5}. Of these, two sets of
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indices, J3 and Jy, define matrices

-1 0 -1 -1 -1 -1
1 -1 2 1 0 2

Ty = 1 2 -1 - 1 2 0
-1 -1 0 1 -1 -1

(3.5)

that have rank 2. The remaining sets of indices are simplicial, in that they enable
us to construct matrices of rank 3.

Now return to the vector z = (=325 —4)’, constructed as the sum '+ 2+ ¢3 +
t4, where t' is the i-th column of the matrix 7. By running through the eight
simplicial sets, we find that z is positively spanned by sets of the form {t/ : j € J}
for each of the simplicial sets .Jy, Js, J7, Jg, Jg. For instance, using .J;, we find
that z belongs to the simplicial cone spanned by the first three vectors from the
set of transfers (2.5), and we can express z in the form z = 3t* +#2+0t3. However,
because z = 4t! + 0t3 — ¢°, we cannot express z as a positive combination of the
vectors t', 3, and #° that span the cone associated with the simplicial set J5. It
is in this sense that we mean in Lemma 3 that a given relation >r,, defined on a
simplicial cone Cr,, is less complete that >r. O

Let J = {iy,...,ix_1} denote a subset of indices from the set {1,...,m}, and
define the subset 7 := {t",...,t%-1} C 7. We associate with the set of transfers
T a finite set of cones K in R¥, such that any cone C € Ky arises as the positive
span of a subset of k—1 linearly independent vectors taken from the set of transfers

T:
K :={Cr, = cone (T;) : t",...,t"* € T are linearly independent } (3.6)

Observe from Definition 1 (77) that Kr is the set of simplicial cones associated with

the set of transfers. Because the cone Cr is pointed, there is at least one element in
m)!

(m—Fk+1DI(k—1)!
in Kp, corresponding to the number of ways of choosing k—1 vectors from the set of
transfers 7. As such, the set of simplicial cones K7 is non-empty and finite. As we
shall see in Corollary 1 below, the simplicial cones in K7 will provide a numerical
criterion for investing whether two distributions x and y are comparable.

Let T denote a (k — 1) x m matrix constructed from the vectors of the set of
transfers, and let Z denote a (k — 1)-vector obtained from the vector z— y °. The

the set ICr. Furthermore, there are at most simplicial cones

SExact expressions of the matrix T and vector 2 will be provided below.
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next result provides an equivalence between four statements: (i) the fact that two
distributions x and y are ordered by the relation =7 defined on a finitely generated
cone Cr, (7i) the possibility of expressing x—y as a positive combination of a subset
of linearly independent vectors from the set of transfers, (iii) the existence of a
simplicial relation =7, such that x and y are ordered by this latter relation, and
(7v) the existence of a generalized inverse GG of the matrix f, such that the product
of G and 7 is greater or equal to Oy_;. As a byproduct of Theorem 1 below, a
form for the generalized inverse G' to be used in applied work will be provided
subsequently 6.

To state the result compactly, we make use of the following notation: for any
vector a = (ay, ..., ax)’, the vector @ = (ay, ..., ax_1)" will denote the projection of a
on its k—1 first coordinates. That is, we shall let Z denote the vector (z1, ..., zx_1),
7 = (y1,...,yx—1) and, in relation to the set of transfers 7 = {t!,...,t™}, T will
denote the matrix whose columns are given by the vectors oLt

Theorem 1 Let T = {t!,....t™} C Z* denote a set of transfers that contains
a Hilbert basis. Then, the following statements are equivalent:

(1) x =7 y.

(i) x — y is a positive combination of a linearly independent subset of vectors
from the set of transfers.

(13i) There is a simplicial cone Cr, C Cr and a simplicial relation >, defined
on Cr,, such that z € Cr, and x =1, y.

(iv) There is a generalized inverse G of the matric T and a vector 6 € RT
such that G(z —7y) = 6.

The significance of the result is as follows. As illustrated in Example 2, when
x =7y, from statement (ii) of the theorem it is always possible to find a positive
basis, that is a linearly independent subset from the set of transfers, such that
this subset positively spans the vector x — y. In turn in (7i7), the simplicial
relation =7, associated with the resulting positive basis is coarser than the order
relation =7, in the sense that the former only enables the researcher to order
a subset of the pairs of distributions that are comparable in the latter relation.
Furthermore, as we shall observe in Section 4.2, the same positive basis provides
all the information needed in order to construct the generalized inverse G of the
matrix 7" whose columns are the elements of the set of transfers. The generalized

6See Section 4.2, for an illustrative application, as well as the Appendix for general form of
the generalized inverse constructed in this paper and its properties.
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inverse in statement (7v) in turn provides a new empirical criterion, simple to
implement, in order to investigate the comparability of a pair of distributions x
and y.

As a first corollary to the theorem, we next turn to the numerical representation
of the simplicial order relation =,. This utility representation is readily derived
by inverting a matrix whose columns are constructed from the generators of the
simplicial cone Cr, .

Corollary 1 Let x and y denote two distributions in ¥ such that x =71 v,
and take a simplicial cone Cr, = {TJa D€ Ri‘l} C Cr such that (x —y) € Cr,.
Then, the matriz A =: —(fj)_l provides a numerical representation of the relation
=1, in the sense that A(x —y) < 01 if and only if (x —y) € Cr,.

The above result is of practical significance in applied work. One way to
construct the simplicial relation =7, that enables the researcher to order x and
Yy, is to repeat the steps detailed in Example 2. Namely, one runs through the
simplicial sets Ji, ..., J; until a Simplicial set J is found such that (z —y) is positive
combination of the columns of TJ Then, from Theorem 1, we have that x =7, y.
Because the columns of TJ are hnearly independent, TJ is the required positive
basis. In turn the inverse matrix A = (TJ) Uexists, and A(Z — ) < 0. It
is in this sense that the matrix A provides a multi-utility representation of the
simplicial relation >, .

Within this framework, we next obtain a criterion that is equivalent to as-
serting that two distributions x and y are incomparable by the relation >r. As
this condition will prove useful in the context of the illustrative application below,
and more generally in applied work, this is stated below as a second corollary of
Theorem 1.

Corollary 2  Using the notation of Theorem 1, the following statements are
equivalent:

(1) The distributions x and y are not comparable according to the relation =r.

(i1) There is a vector ¢ € RF=Y such that ¢-Z > 0 and ¢- 1 < 0 for every vector
t' in the set of transfers T .

The corollary provides a new criterion for investing the incomparability of a
pair of distributions. The result arises as an instance of Farkas lemma’s second
alternative (Lemma 1), in the context of a linear system of inequalities. That
is, when the there exists a vector ¢ in (7i) that separates the point z and the
cone spanned by the columns of the matrix f, Farkas’ lemma informs us that the

13



system of equations T\,u = 2 does not possess non-negative solutions. In turn, z
and y cannot be ordered by the relation >7.

In the case where the number of vectors in the set of transfers is large in
comparison to the number of socioeconomic states the distributions = and y are
constructed from, an important algorithmic question arises as how to compute the
positive basis, that is the k — 1 vectors in the set of transfers that positively span
the vector z — y. This information is needed to construct the simplicial cone Cr,
in statement (i77) of Theorem 1, as well as the generalized inverse G in statement
(iv). Likewise, the construction of the simplicial cone Cr, is required to obtain
the numerical representation of the simplicial relation =7, in Corollary 1. In the
alternative, when x and y are not comparable, one may want to compute the
vector ¢ in Corollary 2, that yields the inequalities ¢-Z > 0 and c¢- " <0 for every
t' € T . Both of the above types of computations are readily implementable from an
algorithm proposed in Schrijver (1986) in the context of linear programming. The
algorithm is adapted in the appendix for the purpose of comparing distributions
defined on a finitely generated cone.

4. An illustrative application

To illustrate the approach developed in this paper, we shall consider an empir-
ical application pertaining to distributions of self-assessed health in a group of
ten European countries from the 2017 wave of the EUROSTAT SILC database:
Greece (GR), Spain (SP), France (FR), Italy (IT), Malta (ML), Belgium (BE),
Germany (GER), Netherlands (NL), United Kingdom (UK) and Denmark (DK).
EUROSTAT asks respondents in each participating country to rate their health
according to a scale consisting of five ordered states. That is, £ = 5 and responds
choose one of five possible assessments: very bad, bad, average, good, or very good.
The frequency distributions pertaining to the set of countries are reported in Table
1.

Within the context of the Hammond inequality order (Gravel et al. 2021;
see also Examples 1 and 2 above), the purpose of the empirical illustration is to
compare distributions using three different methods: (1) the numerical implemen-
tation criterion detailed in Theorem 5 of Gravel et al. (2021), (2) the empirical
criteria of Theorem 1 of this paper, and (3) the use of Schrijver’s linear pro-
gramming algorithm to produce the vector ¢ of Corollary 2 that separates the
Hammond inequality order cone and the vector Z = T — y when z and y are not
comparable.
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In the context of this illustrative application where k = 5, it is useful to first
define the vectors z = (21 — y1, ..., x4 — y4) and Z = (23 — Yo, ..., T5 — Y5 ). Theorem
5 of Gravel et al. (2021) enables us to conclude in the context of this application
that = is more egalitarian than y if and only if the following two sets of partial
sums inequalities are satisfied:

1 0 0 O 1 — U1

. 21 0 0 Ty — U2
Blz = 4 2 1 0 T3 — U S 04 (41)

8 4 2 1 T4 — Y

1 2 4 8 Lo — Y2

- 012 4 T3 — Y3

= <

By? 0 01 2 Tyq — Ysa <04 (42>

0 0 01 T5 — UYs

Together, these eight inequalities define a numerical implementation criterion for
the Hammond inequality order.

In Table 2, we use the partial sums defined by the matrices B; and Bs to
report the outcome of comparing the 45 pairs of distributions using the Hammond
inequality order. A 0 in row ¢ and column j indicates that distributions pertaining
to countries ¢ and j are not comparable. A 2 entry in the (i, ) cell of Table 2
indicates that the distribution of row ¢ is more egalitarian, while a —2 indicates
that it is less egalitarian than the distribution pertaining to row j. Thus, the UK
distribution is more egalitarian that of Greece (GR), not comparable to that of
France (FR), and less egalitarian than that of Malta (ML).

4.1. The simplicial cones of the Hammond inequality order

Next consider comparing the same group of countries using relations defined on
the simplicial cones of the Hammond inequality order. A particular type of set
of transfers for the cone associated with the Hammond inequality order, known
as a minimal Hilbert basis, is given by the columns of the following matrix (Abul
Naga, 2022; Proposition 6)

-1 -1 -1 -1 -1 -1 0 O O O
2 2 2 0 0 0 -1 -1 -1 0
'=|1 -10 0 2 2 0 2 2 0 -1 (4.3)
o -1 0 -1 0 2 -1 0 2 2
o 0 -1 0 -1 -1 0 -1 -1 -1
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When running through all é!—% = 210 subsets of four vectors from the columns

of T', we are able to construct 191 sets of linearly independent vectors. That is,
when there are k& = 5 health categories and there are m = 10 generators of the
Hammond inequality order cone, the set KCr of (3.6) contains 191 simplicial cones.

When country x is more egalitarian than country y according to the Ham-
mond inequality order, Theorem 1 states that (1) there is a simplicial cone Cr, =
cone(Ty) such z = (x —y) € Cr, and, (2) there is a generalized inverse G of T and
vectors 1,00 € R such that z = Ty if and only if GZ = 6. For the comparison
between the UK and Greece, there are seven such simplicial cones that positively
span the vector z, and twenty for the comparison between the UK and Malta. For
the remaining comparable pairs of distributions, the number of simplicial cones
that positively span the vector z ranges between this lower bound of seven and
the upper bound of twenty. For instance, for the comparison between Malta and
Greece, we identify fifteen simplicial cones that generate the underlying vector z.

4.2. The generalized inverse of the matrix T

To construct a generalized inverse in relation to statement (iv) of Theorem 1,
consider a positive basis for x — y, i.e. a set of four linearly independent vectors
{ti, #7, ¢k #'} that positively span this vector. Let J denote the set of indices {i, j,
k, 1} C {1, ..., 10}. Next construct the matrix M by inverting the matrix T, = (t
ok tq), and let my, ..., m4 denote the four rows of M. Note that in the context
of (4.3), T has four rows and ten columns. Accordingly, a generalized inverse G of
T has ten rows and four columns. For the purpose of undertaking distributional
comparisons, a convenient choice of generalized inverse GG of the matrix 7" may be
constructed as follows. For row h of G, set g, = (0,0,0,0) if » € {1, ..., 10}\J
and set g, = mj, when h € J.

For instance, in relation to (4.3), let the vector z be positively spanned by
the columns of the matrix T); where J = {3,8,9,10}. That is, the third, eighth,
nineth and tenth column of the matrix (4.3) provide a positive basis for z. To
construct the required generalized inverse GG, we first construct the matrix M as
follows:

-1

-1 0 0 0 -1 0 0 0
2 1 -1 0 211 a2

M=119 2 0o 2 -4 2 -1 12 (44)
0 0 2 2 4 2 1 -1
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Next, we may construct the generalized inverse G of T as follows T:

/

00 -10000 2 —4 4
00 0 0000 1 -2 2

=100 00000 1 -1 1 (4.5)
00 0 0000 1/2 —1/2 —1

One point worth emphasizing, from the perspective of this illustrative appli-
cation, is that all eight vectors z = x — y of Table 2 that belong to the Ham-
mond inequality order cone, jointly belong to a common simplicial cone Cr,.
That is, we have found that, for all comparable pairs of distributions, the vec-
tor z = x —y is spanned by a common simplicial cone defined by the set of vectors
{fj 17 €4{3,8,9, 10}}. In turn, the relation >7, defined on the simplicial cone
Cr, where J = {3,8,9,10}, may uniquely be used to order the eight compara-
ble pairs of distributions of Table 2. Furthermore, the generalized inverse (4.5)
may uniquely be used to solve for a vector § € R such that G(Z — y) = 6, in
the context of all pairs of distributions that are comparable. Finally, (minus one
times) the matrix M of (4.4) provides a numerical representation of the simplicial
relation defined on cone{t3, %, t°, t'°} in the sense of Corollary 1.

4.3. Results from Schrijver’s algorithm

From comparable pairs of distributions, we turn our attention next to incompara-
ble pairs. As discussed above, the distributions of self-assessed health pertaining
to France and the UK are not comparable. From the above discussion, we may
consider three distinct ways to reach this conclusion: (1) the occurrence a vio-
lation of one or more inequalities (4.1-4.2) from the criterion of Theorem 5 of
Gravel et al. (2021), (2) the impossibility of finding a positive basis for the vector
z and, (3) the existence of a vector ¢ in Corollary 2 that separates the Hammond
order cone from the vector z.

When comparing the France and UK distribution using the first of these ap-
proaches, we find that the first of the four inequalities in (4.1) is violated. Using
the second approach, it is the case that we cannot find a simplicial cone in the set
Kr of (3.6) that contains the vector z. Finally, in relation to (3), we appeal to
Schrijver’s algorithm to compute the required vector c¢. This produces the vector
c=(10 0 0), with the result that ¢-Z = 0.01, and ¢-# € {=1 , 0} for every

"Observe in (4.5) below that as a result of transposition, the hth row of G is the hth column
of the matrix that appears on the right-hand side of the equality sign.
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column vector ¢ of the Hilbert basis matrix (4.3) ®. That is the vector ¢ yields
the inequalities ¢ -2 > 0 and ¢ - ¢ < 0 for every t' € T as required in Corollary
2. As such, either of the above three criteria enables us to conclude that the UK
and France distribution are not comparable by the Hammond order relation.

5. Conclusions

In empirical investigations, the adoption of incomplete preference relations is often
complicated by the fact that they require a derivation of a numerical representa-
tion, in order to enable the researcher to compare distributions, lotteries, or more
generally vectors in the underlying choice set. The purpose of this paper was
to exploit the geometry of order relations defined on finitely generated cones in
order to obtain equivalent criteria for ordering distributions — criteria that do not
require the prior derivation of a numerical representation of the order relation.
We conclude by mentioning some limitations of the approach developed in this
paper.

In relation to statement (ii7) of Theorem 1, it would have been preferable to
partition the cone Cr into simplicial subsets, such that each vector z belongs to a
unique simplicial cone. This is however an active research area of computational
geometry and the theory of triangulations, where the development of efficient al-
gorithms for this purpose is still in its infancy (see for instance De Loéra, Rambau
and Santos, 2010).

We also note that the number of simplicial cones that may be constructed from
the set of transfers grows exponentially when the number of vectors in this set
is much larger than the number of states the distribution is defined on. In such
cases however, it may be possible to appeal to linear programming methods, such
as Schrijver’s algorithm, in order to investigate whether a pair of distributions are
ordered.

6. Appendix

This appendix contains proofs of Lemma 3, Theorem 1, and presents an adaptation
of Schrijver’s linear programming algorithm for the purpose of computing the
vectors from the set of transfers that positively span a vector z = x — y.

8Observe that the vector ¢ that separates z from Cone(f), in this example, is equal to the
first row of the matrix By of (4.1).
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Proof of Lemma 3 Consider first the implication (i) = (i¢). Accordingly,
assume that x >7 y. From Carathéodory’s theorem, there is a simplicial set of

indices J = {iy, ..., ip_1 } and a matrix T := (t"* .. #%*-1) of full rank k — 1, such
that x —y = T\, with \ € Rk 1. Therefore z — y is a positive comblnatlon of
tit ... ti-1 g linearly 1ndependent subset of vectors from the set of transfers.

This estabhshes that (i) = (i7).

To prove (ii) = (iii), we construct the cone Cr, := {Tja: a € Ri '}, and
observe from the proof of the first implication above, that the vector z — y is an
element of the cone Cr,. Because the k£ —1 columns of T'; are linearly independent,
it follows that is Cr, is a simplicial cone. Letting =7, denote the order relation
defined on the cone Cp, it follows that x >=p, y. Finally, because the vectors
th, ... t%-1 are elements of the set of transfers 7, it follows that Cr, CCp. O

Proof of Theorem 1 In order to prove the equivalence between the three
statements, we proceed to show that (i) = (ii) = (iii) = (iv) = (7).

(1) = (i1) = (vii) These implications were established in Lemma 3.

(14i) = (iv) Assume that there is a simplicial cone Cr, C Cr such that
z € Cr,. Without loss of generality, partition the columns of TasT = (V W),
where V' is the set of columns that define the simplicial cone Cr, that spans the
vector 2. That is, Cy, = cone{V'} and

2= VA+ W01k 6.1)

where \ € Ri‘l and V' is a square matrix of maximum rank, equal to &k — 1. Let
0! and 0% denote respectively (m+1—k) x (k—1) and (m+1—k) x (m+1—k)
matrices of zeroes. We may construct one such generalized inverse of 1" follows:

V—l
(o)

where we note that G has m rows and (k — 1) columns. Then,

A+ WO0pnt1-k

@Cf%(( )Gl
== N ) (o)

A+ 051
= , a vector 6 € R
( Omt1-k +

z
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__ To complete the proof, we explain in what way G is a generalized inverse of
T'. Tt is readily verified that the following identities hold:

TGT = T
GTG = G
TG = I;_1, a symmetric matrix.

As such, G is a type {1, 2,3} inverse of f, in the sense of Ben-Israel and Greville
(2013). We note however that G is not a Moore-Penrose inverse, as the latter
would further require that GT be a symmetric matrix.

(tv) = (i) Let G denote a generalized inverse of 7" and § € R, such that
Gz = 0. We wish to show that 2 is an element of the discrete cone generated by the
set of transfers 7', or equivalently that x =7 y. To this effect, note that because
(G is a generalized inverse of T' and Gz = 0, # is a positive solution of the linear
system T = z. Therefore, it follows that 70 = z; that is, z = 01t + - -+ + 0,,t™,
where 64, ..., 6, > 0. In turn, we may conclude that z is an element of the rational
cone Cr = cone{7 }. Because z is an integral vector of the cone Cr, and the set of
transfers contains a Hilbert basis, it follows that there are integers vy, ...,7,, € Z+
such that z = vy, t! + --- +, t™, equivalently, that = =7 ¥. O

6.1. Schrijver’s algorithm

We next present the sets of inputs, outputs and the computations involved in the
adaptation of Schrijver’s algorithm in the context of this paper.

Input 7 = {f,---,#"} C R¥' 7 € R¥' N, = {1,..,m} and J° =
{i1,...,ig—1} C Ny, a set of indices pertalnlng to a ma,leal set of hnearly inde-
pendent vectors from 7, and the matrix 7' = (V W) where V = (t“ NS 1.

Output A vector  C R’ such that 2 = fu or a vector ¢ = (¢q,...,Ck_1)

such that ¢2 > 0 and cv’ < 0 for all j € N,,,.

Step 1 Compute X;,..,\;, , such that 2 = X\, " + .. + \;, %, If
Xiyy s Ni_, > 0, set p; = 0 forall i ¢ J° and p; = A; for all i € J°. Then
p € R and 2 € cone(T) and proceed to terminate at Step 6. If A ¢ RET,
proceed to Step 2.

Step 2 Pick the smallest index h € J° with A\, < 0. Construct the matrix
M with columns v/, with j € J°, and the row vector f = (fi,..., fx_1) given by

20



the h-th row of the matrix M~!. Then fo" = 1, fv/ =0 for all j € J°\{h}, and
fz<o.

Step 3 Compute f/ for all j € N,,,. If f# > 0 for all j € N,,, and given
that from Step 2 fZ < 0 we conclude from Farkas lemma that Z ¢ cone(7), and
we proceed to terminate in Step 6. Otherwise we proceed to Step 4.

Step 4 Pick the smallest index [ € N,,, such that f? < 0. Remove the index h
from [J°, replacing it by [, and define the new set of indices J' = (J°\{h}) U{i}.

Step 5 Set J°:= J' and return to Step 1.

Step 6 Terminate. Output the vector p C R’} if Z € cone(7') and the vector
f=(f1, -, fr_1) otherwise.

By setting ¢ = —f, we therefore obtain the required vector such that c- Z2>0
and ct/ < 0 for all j € N,,, in the case where Z ¢ cone(7).
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Table 1: The distributions of self-assessed health in ten European countries

Country Very bad bad average good Very good
GR 0.0230 0.0809 0.1548 0.2897 0.4515
SP 0.0140 0.0511 0.1922 0.5516 0.1912
FR 0.0100 0.0730 0.2430 0.4300 0.2440
IT 0.0080 0.0500 0.1720 0.6340 0.1360
ML 0.0050 0.0360 0.2050 0.4670 0.2870
BE 0.0150 0.0710 0.1690 0.4370 0.3080

GER 0.0170 0.0679 0.2607 0.4685 0.1858
NL 0.0080 0.0380 0.1930 0.5370 0.2240
UK 0.0160 0.0549 0.1808 0.3946 0.3536

DEN 0.0180 0.0601 0.2092 0.4565 0.2563




Table 2: Inequality comparison of countries by the Hammond inequality order

GR SP FR IT ML BE  GER NL UK DEN
GR =
SP 0 =
FR 0 0 =
IT 0 2 2 =
ML 2 0 0 0 =
BE 0 0 0 0 0 =
GER 0 0 0 0 0 0 =
NL 0 0 0 0 0 2 0 =
UK 2 0 0 0 -2 0 0 0 =
DEN 0 -2 0 -2 0 0 0 0 0 =
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