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Abstract

In the context of distributional comparisons, we introduce consistency and anti-consistency
as two properties for partial orderings defined on ordinal variables. A consistent social
welfare or inequality partial ordering regards distribution p more desirable than q if and
only if it ranks the corresponding reverse-ordered distribution Rp more desirable than Rq.
An anti-consistent partial ordering regards p more desirable than q if and only if the reverse-
ordered distribution Rp is less desirable than Rq. First, for a broad class of social welfare and
inequality partial orders, which we call linear, we characterise those relations which are robust
to any given type of permutation or reversal of the categories. Deploying these results as a
specific consistency test for some prominent examples in the literature, we demonstrate the
consistency of the Hammond inequality order and establish the anti-consistency of first-order
dominance, and the inconsistency of two forms of the Hammond welfare partial ordering.
Then deploying consistency tests based on dominance implementation criteria, we show
that, among relations not falling in the linear class, the median-preserving spreads and the
bipolarisation partial orderings are both consistent, whereas the status Lorenz ordering is
inconsistent.
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1. Introduction

Generally, the concern for consistency in distributional comparisons arises when there is more
than one admissible way to present the data. For example, continuous bounded variables
admit two alternative representations, namely attainments or shortfalls. Though seemingly
trivial, the choice between these two defensible alternative representations bears serious nor-
mative and empirical implications, which have been thoroughly studied.1 The normative
question, then, is whether the consistency of distributional comparisons, i.e., rankings which
are robust to these alternative representations, is desirable itself. Recently, Yalonetzky (2022)
argued that this same challenge is present with ordinal variables since, without any loss of
relevant information, their categories can be sorted in either ascending or descending order.
Think about self-reported health, life satisfaction, education levels, sanitation ladders, po-
litical preferences or religious observance. For example, the Pew Research Center in the US
has measured political ideology using six ordered categories (Center, 2014b,a). Hence, if we
wanted to study trends in ideological polarisation in the US, should the assessment be sen-
sitive to the choice between the order ‘consistently liberal’, ‘mostly liberal’, ‘mixed’, ‘mostly
conservative’, ‘consistently conservative’, and the reverse ordering of these categories?

Consider, for instance, two comparable distributions p = (0.1, 0.3, 0.2, 0.1, 0.3) and q =
(0.05, 0.4, 0.2, 0, 0.35), and let I(p) > I(q) for some inequality index I. Now consider their re-
spective reverse-ordered distributions: Rp = (0.3, 0.1, 0.2, 0.3, 0.1) and Rq = (0.35, 0, 0.2, 0.4, 0.05).
Should we demand I(Rp) > I(Rq)? Yalonetzky (2022) introduced the consistency property
for inequality indices applied to ordinal data, whereby for a given index I and every pair
of comparable distributions p and q, I(p) ≥ I(q) ↔ I(Rp) ≥ I(Rq). But Yalonetzky
(2022) did not explore the challenge of consistency in the context of partial-order relations
for ordinal variables.

This paper is not interested in adjudicating on the desirability of consistency in distribu-
tional comparisons with ordinal variables. We are content to point out that there may be
good reasons for or against it depending on the context.2 Rather, our starting point is to
reflect on the differences and similarities between studying consistency of incomplete rela-
tions on ordinal variables (typically social welfare and inequality partial orderings) on the
one hand, and on the other hand, consistency of inequality and polarisation indices (which
previous research has already addressed, including Yalonetzky (2022) for ordinal variables).
Specifically, the issue of incomparability does not arise with complete relations by definition.
Therefore an index is either consistent, if for all pairs of distributions (on which the relation
is defined) the ordering is preserved by reversing the order of the categories; or inconsistent
otherwise. By contrast, the presence of incomparability in incomplete relations demands a
more nuanced approach to consistency.

1See, for instance, Micklewright and Stewart (1999); Clarke et al. (2002); Kenny (2004); Erreygers (2009);
Lambert and Zheng (2011); Lasso de la Vega and Aristondo (2012); Aristondo and Lasso de la Vega (2013);
Silber (2015); Chakravarty et al. (2015); Kjellsson et al. (2015); Bosmans (2016); Permanyer (2016); Per-
manyer et al. (2022).

2For some interesting ethical implications consider Lambert and Zheng (2011) in the context of bounded
variables.

2



Hence, we propose three consistency criteria. The first of these is the well known property of
consistency, suitably defined in the context of incomplete relations. Namely, an incomplete
relation is consistent if, for every pair of ordered distributions where x dominates y, it is
also the case that Rx dominates Ry, such that Ry ensues from y by reversing the order
of socioeconomic categories (and respectively the same for x). Next we also distinguish
situations whereby a distribution x dominating y results in Ry dominating Rx. This second
property, which we call anti-consistency, may arise in relations featuring anonymous Pareto
improvements, such as the well-known first order stochastic dominance relation, as we show.
Finally, there may be relations whereby (i) x1 dominates y1 and x2 dominates y2, but Ry1

dominates Rx1 while Rx2 dominates Ry2; or (ii) x dominates y but Rx and Ry become
incomparable. This third case (including both situations (i) and (ii)) is how we define
inconsistency of a partial ordering.

Our approach to consistency may be viewed as an inquiry into a particular type of isomor-
phism between pairs of order relations. Specifically, two order relations are isomorphic when
there exists a bijective map f such that all pairs x and y in one relation are ordered in the
same way as the second relation orders f(x) and f(y). In the context of consistency, the
bijective function f is the mapping that transforms x into a new distribution f(x) where
the order of the socioeconomic categories is reversed.

Clearly, the reversal of categories involved in the consistency literature, is a specific type of
permutation of the socioeconomic categories. In the particular case of partial welfare and
inequality orders defined on convex cones (see Magdalou, 2021; Abul Naga, 2022), which we
call linear partial orders, we can associate the three consistency properties to the nature of
the set of transfers, namely the set of distributional transformations deemed to improve social
welfare. Then we can establish the consistency, anti-consistency or inconsistency of a relation
defined on convex cones by examining how its set of transfers is altered by specific types of
categorical permutations. We note that these results apply to any arbitrary permutation of
categories, even though our focus is on the reversal of categories. Using the results to test for
alternative forms of consistency in linear partial orderings, we show, first, that the Hammond
inequality partial ordering (Gravel et al., 2021) is consistent. Then we show that linear social
welfare partial orderings based on anonymous Pareto improvements (‘increments’) are either
anti-consistent, as with first-order stochastic dominance, or inconsistent as in the case of the
two Hammond welfare partial orderings (Gravel et al., 2021) (one defined on ‘increments’
and the other on ‘decrements’).

Not all partial orderings pertaining to welfare or inequality with ordinal variables are defined
on convex cones. Therefore, instead of relying on the set of transfers, we probe these non-
linear relations applying directly the notions of isomorphism. Specifically we conclude that
a non-linear partial order relation is consistent whenever its implementation condition3 for

3Incomplete partial relations such as those considered in this paper are usually described by equivalence
theorems comprising an axiomatic condition, an implementation condition and, often, a transformation
condition. The axiomatic condition normally states that all ordering criteria satisfying a set of axioms (e.g.,
monotonicity) agree in ranking a pair of distributions. The transformation condition states that within
that same pair one distribution can be obtained from the other through a finite sequence of distributional
transformations (e.g., different types of transfers). Finally, the implementation condition establishes a set of
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a pair of distributions where x dominates y implies, and is implied by, the implementation
condition for the same relation and the corresponding pair where f(x) dominates f(y).
Here f is the mapping that transforms x into a new distribution f(x) with the order of
categories reversed. With this test we show that both the median-preserving spread (Allison
and Foster, 2004; Kobus, 2015) and the bipolarisation (Chakravarty and Maharaj, 2015)
partial orderings are consistent, whereas the status Lorenz partial ordering (Jenkins, 2021)
is inconsistent according to our proposed definitions.

The significance of our results is as follows. In empirical work involving distributional anal-
ysis on ordinal variables, it is important for the researcher to be aware of, and investigate,
the effect of reversing the order of socioeconomic categories on their conclusions. The results
in this paper provide analytical criteria for discriminating between consistent partial orders,
which are robust to the reverse ordering of categories; anti-consistent partial orders; and those
relations that are inconsistent, which demand more in-depth analysis from the practitioner.
Therefore, rather than advocating for the fulfillment of a particular consistency-related prop-
erty, this paper offers results that are useful to identify those partial orderings which comply
with whichever normative decision one reaches regarding consistency.

The rest of the paper proceeds as follows. Section 2 provides the general setting and then
proposes the notions of consistency, anti-consistency and inconsistency for incomplete rela-
tions with ordinal variables. Section 3 introduces the concept of linear partial orderings for
welfare and inequality comparisons with ordinal variables and establishes the key general
results pertaining to the robustness of distributional comparisons to specific types of per-
mutations and reversals of distributional categories, followed by the specific consistency and
anti-consistency tests for linear partial orderings. Its subsection 3.1 deploys these results to
study first-order stochastic dominance for ordinal variables (Yalonetzky, 2013; Gravel et al.,
2021), the two Hammond social welfare partial orderings and the Hammond inequality par-
tial ordering (Gravel et al., 2021). Section 4 switches the attention to non-linear partial
orderings and establishes the consistency (or lack thereof) of three inequality partial or-
derings prominent in the literature: median-preserving spreads (Allison and Foster, 2004;
Kobus, 2015), bipolarisation (Chakravarty and Maharaj, 2015) and status Lorenz (Jenkins,
2021). The paper concludes with some remarks in section 5.

2. Three notions of consistency for incomplete partial orderings with ordinal
variables

Let the sets Z, Q and R denote the integers, rational and real numbers, respectively. Addi-
tionally, let Z+ := {0, 1, 2, ...} denote the non-negative integers, and define the sets Q+ and
R+ analogously. Let u′ denote the transpose of a vector u ∈ Rk, and let 0m denote a vector
of m zeroes.

Let there be k > 1 ordered socioeconomic categories from worst to best. Now, let x denote

tests based on comparisons of distributional features (e.g., measures of central tendency, functions of relative
frequencies, etc.) which are necessary and sufficient to uphold the other statements in the theorem and the
pairwise ordering itself.
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a vector in Rk, such that for each of its elements i = 1, ..., k, 0 ≤ xi ≤ n; and
∑k

i=1 = n
where n > 0 is a real number.4 Then, considering subsets L and M of Rk and denoting a
partial-order relation on that subset as �L, we can define an isomorphism in 1:

Definition 1 Two partially ordered sets (L,�L) and (M,�M) are said to be order-isomorphic
if there is a bijective map f : L −→ M such that for all x,y ∈ L, x �L y if and only if
f(x) �M f(y).

That is, if (L,�L) and (M,�M) are isomorphic, then x and y in L are ordered by �L in the
same way as f(x) and f(y) in M are ordered by �M . Moreover, x and y are incomparable
in �L if and only if f(x) and f(y) are incomparable in �M when �L and �M are isomorphic.

Now, let Π denote the set of k × k permutation matrices and consider the reversal matrix
(Horn and Johnson, 2013, p. 33) R ∈ Π:

R :=


0 · · · 0 1
0 · · · 0 1 0
· · · · · · 1 0
...
1 0 · · · 0


such that Rz = (zk, zk−1, .., z1)

′. Then, if S denotes a set of distributions in Rk, we can
define the set of reversed distributions

RS = {(xk, ..., x1) : (x1, ..., xk) ∈ S},

and a partial order (RS,�S).

Then we propose a general definition of consistency, anti-consistency and inconsistency in
terms of a reversing bijective mapping f(x) = Rx:

Definition 2 A partial-order relation (�S) for ordinal variables is said to be: (1) consistent
if, for every ordered pair x and y in the ground set S, x �S y if and only if Rx �S Ry in
RS; (2) anti-consistent if, for every ordered pair x and y in the ground set S, x �S y if
and only if Ry �S Rx in RS; or (3) inconsistent if either:

• There exist at least two ordered pairs, x1,y1 and x2,y2, in S such that x1 �S y1 and
x2 �S y2, but Rx1 �S Ry1 and Ry2 �S Rx2 in RS; or

• there exists one ordered pair x,y such that x �S y but Rx and Ry are incomparable
by the relation �S.

4If n = 1 then x is a relative frequency distribution.
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That is, any partial-order relation �S is consistent if, for all ordered pairs x and y in S,
x �S y if and only if Rx �S Ry in RS. We can also envision an alternative scenario for
some partial-order relation �S whereby for all ordered pairs x and y in S, x �S y if and
only if Ry �S Rx in RS. We name this property anti-consistency.

In order to distinguish specifically inconsistent relations from relations which generally do not
satisfy the consistency property (e.g., anti-consistent relations), we refer to the latter as non-
consistent. Likewise, any relation violating anti-consistency is named non-anti-consistent.
Naturally, the latter include both consistent and inconsistent cases.

In section 3, we focus on the class of linear social welfare and inequality orderings. These
can be defined as relations satisfying a system of inequalities of the form A(x− y) ≤ 0m

where each element of A is independent of x and y, or equivalently via a set of vectors
T := {t1, · · · , tq} that provide the directions of increase in social welfare; the so-called
set of transfers (see Magdalou, 2021). In section 3 the focus will be on how the bijective
mapping f(x) = Rx transforms the set of transfers T in the partially ordered set (L,�L) into
a new set of transfers f(T ) in (M,�M). In section 4, however, non-linear social welfare and
inequality partial orderings are more easily treated by examining how the bijective mapping
f transforms the implementation criteria when going from L to M.

3. Linear social welfare and inequality partial orderings for ordinal variables

We begin this section by introducing a class of order relations in definition 3, which we call
linear. Then we review some properties of the solution set of a system of linear inequalities,
and the effect of permuting some variables thereon. We need these properties in order to
formulate the main results of this section.

Definition 3 Linear order relation: Let x and y denote two vectors in Rk, and z := x− y.
An order relation � on Rk is said to be linear if there exists an m× k real full-rank matrix
A whose elements are all independent of any pair x,y ∈ Rk, such that for all distributions
x,y ∈ S, x � y if and only if Az ≤ 0m.

Some notable examples of linear order relations are considered in subsection 3.1.

To understand how permutation of variables affects the solution of a linear system of in-
equalities Az ≤ 0m, consider first an easier setup, that of a homogeneous linear system of
equalities Az = 0m. Then, if λ1, λ2 ∈ R are any scalars, and t1 and t2 are any k-dimensional
vectors such that At1 = 0m and At2 = 0m, it is also the case that s := λ1t

1 + λ2t
2 is a

solution of the homogenous system Az = 0m. That is, the solution set of the homogeneous
linear system of equalities defines an algebraic structure known as a subspace. Furthermore,
if r denotes the rank of A, it follows that the solution set of this system has dimension
k− r, meaning that any vector s such that As = 0m can be expressed as an arbitrary linear
combination of at most k − r linearly independent vectors.5

5See Abadir and Magnus (2005, chapter 6) for further details.
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In turn, in the case of a system of inequalities Az ≤ 0k underlying the class of linear partial
orderings, if t1 and t2 are any k-dimensional vectors such that At1 ≤ 0m and At2 ≤ 0m,
then s := λ1t

1 + λ2t
2 is a solution of the system Az ≤ 0m if λ1, λ2 are non-negative

scalars. Thus, the solution set of the linear system of inequalities is a finitely generated cone
C := {λ1t1 + · · ·+ λqt

q : λ1, . . . , λq ∈ R+} ⊆ Rk. Moreover, save for exceptional cases, it is
generally not possible to determine q (the cardinality of the set of solutions) as a function
of k and the rank of the matrix r.

Let Π denote the set of permutation matrices in Rk. We note that if P ∈ Π is a permutation
matrix, then P is an orthogonal matrix. That is, P is an invertible matrix and the inverse
P−1 equals the transpose of P, namely P′ which is also a permutation matrix. From here
on, we consider two systems of inequalities:

Az ≤ 0m, (1)

and for some permutation matrix P ∈ Π

APz ≤ 0m. (2)

We call (1) the principal system, and (2) the auxiliary system. Because the solution set to
a system of m linear inequalities in k variables is a finitely generated cone, we can define a
set T ⊆ Rk,

T :=
{
t1, · · · , tq

}
such that{

z ∈ Rk : Az ≤ 0m

}
=

=
{
λ1t

1 + · · ·+ λqt
q : λ1, . . . , λq ≥ 0

}
= cone(T ).

Cone(T ) is said to be a pointed cone if for all s elements of cone(T ) \ 0k, −s is not an
element of cone(T ). If the matrix A is of full rank, then cone(T ) is pointed (Burns et al.,
1974). Following Magdalou (2021), we may call T the set of transfers. The first question
we address establishes the relation between the solution sets of the principal and auxiliary
system. For this purpose, we let T ∗ := {t∗1, · · · , t∗r} denote the solution set of the auxiliary
system (2), such that{

z ∈ Rk : APz ≤ 0m

}
=

=
{
δ1t
∗1 + · · ·+ δrt

∗r : δ1, . . . , δr ≥ 0
}

= cone(T ∗).

Finally gather in a k × q matrix T the vectors t1, · · · , tq, and in a k × r matrix T∗ the
vectors t∗1, · · · , t∗r. Now consider lemmas 3.1 and 3.2 which explore relations between the
solution sets of Az ≤ 0m and APz ≤ 0m:

Lemma 3.1 Let P ∈ Π denote a k×k permutation matrix, and let T := {t1, · · · , tq} ⊆ Rk

denote a set of transfers. Then {z : Az ≤ 0m} = cone(T ) if and only if {z : APz ≤ 0m} =
cone(P′t1, · · · ,P′tq).
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Proof

{z : Az ≤ 0m} = cone(T )⇐⇒
AT ≤ 0m×q ⇐⇒

APP′T ≤ 0m×q ⇐⇒
{z : APz ≤ 0m} = cone{P′t1, · · · ,P′tq}

where the logical equivalence between the second and the third line of the proofs follows
from the fact that any permutation matrix is orthogonal.

Crucially, lemma 3.1 establishes a unique direct correspondence between the respective so-
lution sets of Az ≤ 0m and APz ≤ 0m. When z is the difference between two distributions,
lemma 3.1 states that a particular set of transfers (linearly combined with positive coefficients
in myriad ways) satisfies Az ≤ 0m (which in turn relates to an order relation between the
distributions in z) if and only if permuting each transfer in the set by the same permutation
matrix P yields a set of transfers satisfying APz ≤ 0m. Thus lemma 3.1 enables us to write
the solution set of APz ≤ 0m as a function of the solution set of Az ≤ 0m and P. Then we
can use this lemma to prove in lemma 3.2 that, in fact, the solution sets of both principal
and auxiliary systems are identical if and only if the associated sets of transfers are the same.
Put differently, the solution sets of both principal and auxiliary system are identical if and
only if each respective set of transfers is a collection of distinct pairs of transfers, comprising
a given transfer t and its permuted counterpart P′t:

Lemma 3.2 Let P ∈ Π denote a k × k permutation matrix. Then {z : Az ≤ 0m} =
{z : APz ≤ 0m} if and only if

(i) for all ti ∈ T , there exists t∗j ∈ T ∗ such that ti = t∗j, and

(ii) for all t∗g ∈ T ∗, there exists th ∈ T such that t∗g = th.

Proof From Lemma 3.1, the solution sets of the principal and auxiliary systems are given
by

{z : Az ≤ 0m} =
{
λ1t

1 + · · ·+ λqt
q : λ1, ..., λq ≥ 0

}
(3)

{z : APz ≤ 0m} =
{
µ1t

∗1 + · · ·+ µqt
∗q : µ1, ..., µq ≥ 0

}
(4)

Therefore, the solution set of the principal system (3) is a subset of the solution set of (4),
if T ⊆ T ∗; equivalently if condition (i) holds. Conversely, the solution set of the auxiliary
system is a subset of the solution set of the principal system , if T ∗ ⊆ T ; equivalently if
condition (ii) holds. Finally, the principal and auxiliary systems have the same solution set
if and only if T ∗ = T ; equivalently, if and only if (i) and (ii) hold.
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Now we are ready to apply lemmas 3.1 and 3.2 to our stated problem. First, note that the
reversal matrix R is symmetric. Furthermore, given that R is an orthogonal matrix, we have
R′ = R = R−1. Then, proposition 3.1 shows that a partial ordering is consistent between
the two alternative categorical sorting methods if and only if reversing all the elements within
the set of transfers yields transfers which also belong in the same set:

Proposition 3.1 A linear partial ordering defined by the system of inequalities Az ≤ 0m

is consistent if and only if for all s = (s1, ..., sk)′ ∈ T , the vector s∗ := Rs = (sk, ..., s1)
′

belongs in the set of transfers T .

Proof We first recall that R is a symmetric and orthogonal matrix. The result then
follows as a consequence of lemma 3.2 (which in turn depends on lemma 3.1).

Analogously, proposition 3.2 shows that a partial ordering is anti-consistent if and only if
reversing all the elements within the set of transfers, and then multiplying them by minus
one, yields transfers which also belong in the same set:

Proposition 3.2 A linear partial ordering defined by the system of inequalities Az ≤ 0m

is anti-consistent if and only if for all s = (s1, ..., sk)′ ∈ T , the vector s∗ := −Rs =
(−sk, ...,−s1)′ belongs in the set of transfers T .

Proof Let Az = x− y and let I ∈ Π be the k-dimensional identity matrix. Then:

{z : Az ≤ 0m} = cone(T )⇐⇒
AT ≤ 0m×q ⇐⇒

A(−I)(−I)T ≤ 0m×q ⇐⇒
{z : A(−I)z ≤ 0m} = cone(−T ),

where −T = (−t1, ...,−tq). Next, applying lemma 3.1 we have: {z : −ARz ≤ 0m} =
cone(−Rt1, ...,−Rtq). Then, using the same reasoning as in lemma 3.2, it follows that
{z : Az ≤ 0m} = {z : −ARz ≤ 0m} if and only if for all s = (s1, ..., sk)′ ∈ T , the vector
s∗ := −Rs = (−sk, ...,−s1)′ is also an element of the set of transfers T .

To demonstrate the usefulness of propositions 3.1 and 3.2, we next investigate the consistency
properties of some well-known partial order relations for distributional analysis on ordinal
variables.
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3.1. Applications

3.1.1. First-order stochastic dominance

The first-order stochastic dominance (henceforth FOD) partial ordering is linear and its
matrix A is a lower triangular matrix of ones:

Ak×k :=


1 0 · · · 0 0
1 1 · · · 0 0
...

. . .
...

1 1 · · · 1


Let t = (t1, ..., tk), where for some i < k ti = −1, ti+1 = 1 and tj = 0 for all j 6= i, i+ 1. We
can construct k−1 such vectors and, following Gravel et al. (2021), we call them increments.
Then, x �FOD y (x first-order dominates y) if and only if A(x− y) ≤ 0k, which in turn is
equivalent with being able to obtain x from y through a sequence of increments.

We can test the consistency of the FOD partial ordering with proposition 3.1 by noting
first that the set of transfers is comprised of the set of k − 1 Pareto improvements, or
increments (Gravel et al., 2021). For instance, when k = 4 the vector z = (0,−1, 1, 0)′ is
an increment (i.e., one person moving from the second worst category to the second best).
Then Rz = (0, 1,−1, 0)′ becomes a typical decrement (Gravel et al., 2021), namely the
exact opposite of a Pareto improvement, which is not in the set of transfers corresponding
to FOD. Hence we conclude that FOD is not consistent. Moreover, if z = x−y then, in the
previous example, we can easily deduce that x �FOD y and Ry �FOD Rx because we can
always undo the decrement to obtain Ry back from Rx through the corresponding reverse
decrement, i.e., an increment. In fact, using proposition 3.2, we note that the negative of a
reverse increment (i.e., a decrement) is also an increment; that is, t is an increment if and
only if −Rt is an increment. Hence we also conclude that FOD is anti-consistent. Corollary
3.1 collects these equivalent results:

Corollary 3.1 The following statements are equivalent: For some natural number k > 1,
reversal matrix R and any pair of frequency distributions x and y in Rk:

1. x �FOD y.

2. Ry �FOD Rx.

3. x can be obtained from y through a finite sequence of increments; likewise Ry can be
obtained from Rx through a finite sequence of increments.

4. Rx can be obtained from Ry through a finite sequence of decrements.

Proof : Direct application of propositions 3.1 and 3.2 combined with the equivalence theorem
of first-order dominance (e.g. see Gravel et al., 2021, theorem 1).
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3.1.2. The Hammond inequality ordering

Gravel et al. (2021) introduced the concept of a Hammond progressive transfer for ordinal
variables, whereby an individual moves from category i to j jointly with another one who
moves from q to p such that 1 ≤ i < j ≤ p < q ≤ k. That is, a Hammond transfer renders a
pair of people or units closer to each other. The Hammond inequality partial ordering, whose
relation we denote by �HI , is linear (Gravel et al., 2021, theorem 5). Therefore we can test
its consistency using proposition 3.1. The key property is that the reversal of any Hammond
transfer remains a Hammond transfer. For instance, when k = 6, z = (0,−1, 0, 2, 0,−1)′ is a
Hammond transfer. Then, its reverse Rz = (−1, 0, 2, 0,−1, 0)′ is also a Hammond transfer.
Same, for instance, with z = (−1, 1, 0, 1, 0,−1)′, which becomes Rz = (−1, 0, 1, 0, 1,−1)′

when reversed, and so forth. Therefore, by way of corollary to proposition 3.1 we conclude
that the Hammond inequality partial ordering is consistent :

Corollary 3.2 For some natural number k > 1 and reversal matrix R and any pair of
frequency distributions x and y in Rk, x �HI y if and only if Rx �HI Ry.

Proof : Direct application of proposition 3.1.

3.1.3. The Hammond social welfare ordering

Gravel et al. (2021) also introduced the Hammond social welfare partial ordering for ordinal
variables. Based on their equivalence theorem, we say that x �H+ y, namely x is preferable
to y in terms of Hammond social welfare, if and only if x is obtained from y through a finite
sequence of increments and/or Hammond transfers. That is, the Hammond social welfare
partial ordering reflects concerns for both Pareto improvement and Hammond egalitarianism.
This partial ordering is linear and its matrix A is a lower triangular matrix with typical
positive entries aij = 2i−j for i ≥ j and aij = 0 otherwise, with i = 1, ..., k − 1 (see Gravel
et al., 2021). Therefore, we can use proposition 3.1 to test the consistency of this partial
ordering. We know already from subsections 3.1.1 and 3.1.2 that reversed Hammond transfers
remain Hammond transfers whereas reversed increments become decrements. Then, since the
Hammond social welfare partial ordering relies on both types of transfer, we must conclude
from proposition 3.1 that the Hammond social welfare partial ordering is not consistent.

Additionally, we can use proposition 3.2 to test its anti-consistency. We know from section
3.1.1 that multiplying a reversed increment by minus one yields an increment. However,
multiplying a reversed Hammond transfer by minus one yields a spread whereby the two
units involved end up further apart (think about the regressive counterpart to the Hammond
transfer). Hence, this new transfer does not belong in the set associated with the Hammond
social welfare partial ordering. Therefore, the latter cannot be anti-consistent either. In fact,
the Hammond social welfare partial ordering is inconsistent:

Corollary 3.3 The Hammond social welfare ordering is inconsistent.
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Proof : Considering x, y, r and w in Rk; let x �H+ y and r �H+ w, but x is obtained from
y exclusively through a sequence of increments, whereas r is obtained from w exclusively
through a sequence of Hammond transfers. Then we can show that Ry �H+ Rx and Rr �H+

Rw. This fits precisely the description of the first inconsistency scenario in definition 2.

3.2. Reverse iso-morphism between pairs of order relations

We finish the discussion of consistency among linear partial orderings, noting that other
iso-morphisms involving reversal matrices can be deduced, even when the partial orderings
are inconsistent. Take the case of the two Hammond welfare partial orderings. In addition
to the partial order relation �H+, Gravel et al. (2021) replaced increments with decrements
in order to define another relation whereby x �H− y, namely x is preferable to y in terms of
Hammond social welfare with decrements, if and only if x is obtained from y through a finite
sequence of decrements and/or Hammond transfers. Think about social bads (e.g. pollution)
as an empirical motivation for this type of ordering. This partial ordering is also linear and
its matrix A is an upper triangular matrix with typical positive entries aij = 2j−i−1 for i ≤ j
and aij = 0 otherwise, with i = 1, ..., k − 1 (see Gravel et al., 2021).

The pair of relations �H+ and �H− belong to a class which we define as follows:

Definition 4 Two partially ordered sets (S,�L) and (S,�M) are said to be reverse order-
isomorphic, if for the bijective map f : S −→ RS, and for all x,y ∈ S, x �L y if and only
if Rx �M Ry.

Then we can establish a reverse iso-morphism between the pair of relations �H+ and �H−,
as stated in corollary 3.4:

Corollary 3.4 The following statements are equivalent: For some natural number k > 1,
reversal matrix R and any pair of frequency distributions x and y in Rk:

1. x �H+ y.

2. Rx �H− Ry.

3. x can be obtained from y through a finite sequence of increments and/or Hammond
transfers.

4. Rx can be obtained from Ry through a finite sequence of decrements and/or Hammond
transfers.

Proof : For proving that (3) if and only if (4), recall that reversing an increment yields a
decrement (and vice-versa), whereas reversing a Hammond transfer yields another Hammond
transfer (corollary 3.2). Then the two equivalence theorems of Hammond social welfare
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(Gravel et al., 2021, theorems 3 and 4) prove the equivalences between statement pairs
(1)-(3) and (2)-(4), respectively.

Finally, note that a similar reverse isomorphism can be identified between first-order domi-
nance and a counterpart welfare criterion defined solely over decrements.

4. Non-linear social welfare and inequality partial orderings for ordinal vari-
ables

In the following subsections, we probe the consistency (or lack thereof) of prominent partial
orderings for ordinal variables including (i) median-preserving spreads, (ii) bipolarisation,
and (iii) the status Lorenz criterion. Their non-linearity precludes the application of propo-
sitions 3.1 and 3.2. However, let (S,�S) denote a partial order and (RS,�S) denote the
relation after reversing the order of categories. Returning to definition 1, note that the
function f : S → RS given by f(x) = Rx is bijective. Therefore, in the discussion below
consistency is probed by examining whether for all x,y ∈ S, x �S y if and only if Rx �S Ry,
which is the very definition of the property. Note that a key straightforward implication of
this definition (2) is the mutual implication between the implementation condition of every
pair x,y in S ordered by relation �S and the implementation condition of its counterpart
Rx,Ry in RS ordered by �S, when the partial-order relation (S,�S) is consistent. Thus,
for each aforementioned non-linear partial ordering we test for consistency focusing on its
implementation condition.

4.1. Median preserving spreads and bipolarisation

Several inequality measures are sensitive to so-called median-preserving spreads (Mendelson,
1987; Allison and Foster, 2004; Kobus, 2015), thereby respecting the median-preserving-
spread (henceforth MPS) partial ordering. MPS are movements of probability mass (e.g.,
people) away from the distribution’s median in a way that increases dispersion and produces
“fatter tails”.

Consider relative frequency distributions of ordinal variables such as p ∈ Ok with typical
element pi, where Ok is the set of all frequency distributions with k > 1 categories (i.e., all
elements of p are non-negative and 1′kp = 1). Likewise, P and P stand for the cumulative
distribution and survival functions of P, respectively. Let the median, me, be the category
ensuring Pme−1 < 0.5 and Pme ≥ 0.5.6 Also let Rp be the reversed ordered distribution
corresponding to p, with typical element pRi = pk−i+1 for all i = 1, ..., k (same for cumulative
and survival functions) and median mR

e = k −me + 1.

Then, let �MPS denote the MPS partial ordering, such that p �MPS q means that p is
a median-preserving spread of q, namely the former is obtained from the latter through a
finite sequence of median-preserving spreads.

6For simplicity we focus on the case of a single common median, but the definitions and results can be
extended to the case of several common medians.
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Apouey (2007) and Chakravarty and Maharaj (2015) pioneered the measurement of bipolar-
isation with ordinal variables. Both bipolarisation indices and partial orderings are sensitive
to median-preserving spreads, namely ‘fatter tails’ should correspond to higher bipolarisa-
tion. But additionally, they abide by the increasing bipolarisation property, whereby bringing
two people on one side of the median closer (essentially, a Hammond transfer on one side of
the median) should lead to higher bipolarisation (i.e., higher clustering on either side of the
median).7

Let �B denote the bipolarisation partial ordering. Chakravarty and Maharaj (2015, the-
orem 5) provide a two-statement definition of the bipolarisation partial ordering, whose
implementation condition proceeds as follows:8

p �B q if and only if

i
me−1∑
i=j

Pi ≤
me−1∑
i=j

Qi for all 1 ≤ j ≤ me − 1 and (ii)

j∑
i=me

Pi ≥
j∑

i=me

Qi for all me ≤ j ≤ k − 1. (5)

Neither the bipolarisation partial ordering nor the MPS partial ordering are linear in the sense
of definition 3, because even though we can write a matrix A for each of them, the matrix’s
elements are a function of the median, which in turn is a function of the elements of p and q.
Hence the consistency assessment for the bipolarisation partial ordering in proposition 4.1,
relies on the implementation conditions test, as opposed to proposition 3.1. That is, we test
the consistency of this partial ordering by checking whether the implementation condition
associated with (Ok,�B) (for any k > 1) holds if and only if the implementation condition
associated with (ROk,�B) also holds.

Proposition 4.1 The bipolarisation partial ordering is consistent in the sense of definition
2.

Proof :

The bipolarisation relation �B orders distributions in a subset of Ok defined by distributions
sharing median me. Then the mapping R sends the partial order (Ok

me,�B) to the subset
of distributions in (Ok with median k−me + 1 and the relation �B, namely (Ok

k−me+1,�B).
Because the mapping f(x) = Rx is bijective, in order to show that there is an isomorphism
between the two aforementioned partial orders, we just need to prove that the implementation
condition for p �B q holds if and only if the implementation condition for Rp �B Rq holds;

7However, note that the Hammond inequality partial ordering neither implies nor is implied by the
bipolarisation partial ordering even though the latter relies on Hammond transfers on one side of the median.
Hence we cannot use corollary 3.2 stating the consistency of the Hammond inequality partial ordering to
assess the bipolarisation partial ordering.

8For simplicity we focus on the case of a single common median, but the definitions and results can be
extended to the case of several common medians.
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bearing in mind the equivalence between the implementation condition in (5) and the other
statements defining the bipolarisation partial order (see Chakravarty and Maharaj, 2015).

That is, we need to prove that
∑me−1

i=j Pi ≤
∑me−1

i=j Qi for all 1 ≤ j ≤ me−1 and
∑j

i=me
Pi ≥∑j

i=me
Qi for all me ≤ j ≤ k−1, if and only if

∑mR
e −1

i=j PR
i ≤

∑mR
e −1

i=j QR
i for all 1 ≤ j ≤ mR

e −1

and
∑j

i=mR
e
PR
i ≥

∑j
i=mR

e
QR

i for all mR
e ≤ j ≤ k − 1, where mR

e = k −me + 1. The proof is
as follows:∑me−1

i=j Pi ≤
∑me−1

i=j Qi for all 1 ≤ j ≤ me − 1 if and only if
∑j

i=k−mR
e
PR
k−i ≥

∑j
i=k−mR

e
QR

k−i

for all k−mR
e ≤ j ≤ k−1, because Pi = 1−PR

k−i (for all i = 1, ..., k−1) and mR
e = k−me+1.∑j

i=me
Pi ≥

∑j
i=me

Qi for all me ≤ j < k if and only if
∑k−mR

e +1
i=k−j PR

k−i ≤ QR
k−i for all

1 ≤ j < mR
e , because Pi = 1− PR

k−i (for all i = 1, ..., k − 1) and mR
e = k −me + 1.

Though not stated in Chakravarty and Maharaj (2015, theorems 1 and 3), it is easy to show
that p �B q if and only if p can be obtained from q through a finite sequence of median-
preserving spreads and/or clustering transfers (i.e., Hammond transfers on one side of the
median). Besides being intrinsically valuable, this latter statement helps us conclude that
the MPS partial ordering is also consistent by way of corollary to proposition 4.1:

Corollary 4.1 The MPS partial ordering is consistent.

Proof : Since p �B q if and only if p can be obtained from q through a finite sequence
of MPS and/or clustering transfers, then it is the case that (Ok

me,�MPS) ⊂ (Ok
me,�B

me
).

Therefore, since the definition of consistency pertains to every ordered pair within the partial
ordered set, it must be true that the consistency of the bipolarisation partial ordering implies
the consistency of the MPS partial ordering.

4.2. Status Lorenz

Cowell and Flachaire (2017) proposed measuring inequality with ordinal variables in terms of
dispersion of people’s personal status, which is particularly useful for comparing distributions
without common medians. They proposed operationalising personal status in four possible
ways, including peer-inclusive downward-looking status in the form of the proportion of
people in the same category or worse. This subsection focuses on this definition of status
(but similar results hold for the other alternatives).9

Then, Cowell and Flachaire (2017) axiomatically characterised a single-parameter class of
status inequality indices. As with other such classes, theirs admits several members depend-
ing on the choice of the single parameter. Hence, Jenkins (2021) proposed a dominance

9The other three definitions of status proposed by Cowell and Flachaire (2017) are: peer-exclusive
downward-looking status which is the proportion of people in any worse category; peer-inclusive upward-
looking status which is measured by the proportion of people in the same category or better; and peer-
exclusive upward-looking status which is the proportion of people in any better category.
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condition whose fulfilment guarantees the robustness of a status inequality comparison to
any alternative choice of index belonging in the class proposed by Cowell and Flachaire
(2017) and, generally, for any inequality index I : [0, 1]n → R that is decreasing and convex
(where n is the population size as every person is attributed a status equal to the proportion
of people in the same category or worse). The subsequent partial ordering, �S, is based on
the generalised Lorenz curve for ordinal variables presented in 6:

GL(P; j) =
1

n

j∑
i=1

P ∗i , j = 1, ..., n, (6)

where, for every individual i: Pi =
∑k

j=1 PjI(i ∈ ∫j), I(.) = 1 if the statement in parenthesis
is true (otherwise I(.) = 0) and ∫j is the set of individuals in category j. That is, each
individual’s status is measured by the proportion of people in the same category or worse.
Finally, the asterisk in P ∗i means that the statuses are ordered from lowest to highest.

For comparisons with populations of equal size, the related implementation condition (Jenk-
ins, 2021) can be expressed as follows:

p �S q if and only if GL(p; j) ≥ GL(q; j) for all j = 1, ..., n. (7)

The status Lorenz partial ordering is not linear. In fact, for any j = 1, ..., n, it is easy
to show that this partial ordering remains a non-linear function of the frequencies in p
(see 6). Hence this partial ordering cannot be represented by a matrix A according to
definition 3. Therefore, proposition 3.1 is not applicable and the consistency assessment for
the Lorenz status partial ordering stated in proposition 4.2 relies on the implementation
condition (again):

Proposition 4.2 The status Lorenz partial ordering is inconsistent.

Proof : We need to prove that it is not true that, for any pair p,q ∈ Ok, GL(p; j) ≥ GL(q; j)
for all j = 1, ..., n if and only ifGL(Rp; j) ≥ GL(Rq; j) for all j = 1, ..., n. There are different
ways to reach this conclusion. We use the counterexample of a pair p,q ∈ Ok characterised
by GL(p; j) ≥ GL(q; j) for all j = 1, ..., n and GL(Rp; j) < GL(Rq; j) for some j = 1, ..., n.

Let n = 10 with p = (0.3, 0.5, 0.2) and q = (0.3, 0.4, 0.3). Then, for each j = 1, ..., n, the
values of GL(p; j), GL(q; j), GL(Rp; j) and GL(Rq; j) appear on table 1.

Table 1 shows that GL(p; j) ≥ GL(q; j) for all j = 1, ..., 10; however, GL(Rp; j) <
GL(Rq; j) for j = 1, 2 and GL(Rp; j) ≥ GL(Rq; j) for j = 3, ..., 10 (the Lorenz curves
of the reversed distributions ‘cross’). Hence, in the case of the status Lorenz partial order-
ing, the mapping R takes us from a comparable pair (p and q) to an incomparable pair (Rp
and Rq). As a result, the status Lorenz partial ordering is inconsistent.
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Table 1: An inconsistent inequality comparison with status Lorenz curves

j 1 2 3 4 5 6 7 8 9 10
GL(p; j) 0.03 0.06 0.09 0.14 0.19 0.24 0.29 0.34 0.36 0.38
GL(q; j) 0.03 0.06 0.09 0.13 0.17 0.21 0.25 0.28 0.31 0.34
GL(Rp; j) 0.02 0.04 0.09 0.14 0.19 0.24 0.29 0.32 0.35 0.37
GL(Rq; j) 0.03 0.06 0.09 0.13 0.17 0.21 0.25 0.28 0.31 0.34

5. Conclusions

Arguably, if one favours (respectively opposes) consistent inequality or welfare comparisons
with ordinal variables, then analytical coherence minimally demands choosing among mea-
surement criteria which satisfy (respectively violate) the consistency desideratum. For the
case of robust inequality and welfare comparisons relying on partial orderings we show that
some criteria (such as Hammond inequality or bipolarisation) are consistent whereas others
(such as Hammond social welfare or status Lorenz inequality) are not. Thus, our results are
useful to identify those partial orderings which comply with whichever normative decision
one reaches regarding consistency.

On that note, our results for linear inequality partial orderings (propositions 3.1 and 3.2) en-
able the axiomatisation of consistency and anti-consistency into any future proposal of linear
partial orderings by imposing T = RT for consistency or T = −RT for anti-consistency,
where T is the set of transfers defining the partial ordering and R is the reversal matrix.

Finally, as expected, welfare partial orders sensitive to Pareto improvements are not consis-
tent because reversing an increment yields a decrement. We defined pairs of relations �L

and �M to be reverse-order isomorphic whenever x and y are ordered by �L if and only if
the reverse distributions Rx and Ry are similarly ordered by �M . As such, the two rela-
tions �H+ and �H− proposed by Gravel et al. (2021), respectively the transitive closure of
increments and Hammond transfers, and the transitive closure of decrements and Hammond
transfers, belong to the class of reverse-order isomorphic (pairs of) relations introduced in
definition 4 of our paper.
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