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Abstract

We characterize the minimal Hilbert basis of the Hammond order cone,
and present several novel applications of the resulting basis. From the basis,
we extract an invertible matrix, that provides a numerical representation of
the Hammond order relation. The basis also enables the construction of a
space—that we call the Hammond order lattice—where order-extensions of the
Hammond order (i.e. more complete relations) may be derived. Finally, we
introduce a class of maximal linearly independent Hilbert bases, in which
the specific results derived in relation to the Hammond order cone, are
shown to hold more generally.
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1. Introduction

The last decade has witnessed an increased interest among social scientists in
the distributional analysis of ordered response data, such as self-assessed health
and happiness. One major methodological contribution in the field is the work
of Gravel, Magdalou and Moyes (2021), who introduce a social welfare ordering
founded on Hammond’s equity concept (Hammond, 1976).1

We owe to Magdalou (2021) the first study of integral Hilbert bases of cones
associated with abstract inequality or social welfare order relations defined on
univariate or multivariate discrete distributions. An important contribution of
Magdalou (2021) is to demonstrate the fundamental role Hilbert bases perform in
characterizing the set of order-preserving functions of the underlying relation of
interest. Specifically, the general equivalence theorem of Magdalou requires that
the set of welfare improving transformations of the distribution of interest (the
so-called set of transfers) contains an integral Hilbert basis of the underlying cone
ordering.

When we set out to derive the minimal Hilbert basis of the Hammond order
cone (that is, the cone associated with the welfare order relation introduced by
Gravel et al. 2021), we find that when the variable of interest is defined on k
ordered socioeconomic states, the minimal basis consists of k−1 vectors, that are
linearly independent. In turn, the derivation of this result enables us to extend
Gravel et al. (2021) and Magdalou (2021) in several directions. Specifically, the
linear independence property enables us to introduce several novel applications of
the minimal Hilbert basis of the Hammond order cone, and more generally, of a
class of minimal Hilbert bases that share the same linear independence properties.

Firstly, we show that the minimal Hilbert basis can be directly used to identify
the numerical implementation criterion (the so-called partial sums) that enable a
researcher to conclude that a pair of distribution are ordered. This result is of
practical relevance: to date, there is no simple method of deriving these partial
sums. The method proposed here is simple, in that it consists of deriving the
partial sums by inverting a matrix extracted from the minimal Hilbert basis. The
same inversion method is used to illustrate how the well known partial sums
associated with the first order stochastic dominance relation, are readily obtained
from the minimal Hilbert basis associated with this cone ordering. Likewise,
the inversion method is used to obtain the partial sums of the Hammond order,

1Other related approaches include Apouey, Silber and Xu (2020) as well as Seth and Yalonet-
zky (2020).
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previously derived by Gravel et al. (2021) from an entirely different perspective.
A second area of application of the minimal Hilbert basis that is proposed in

the paper is to introduce a new space—that we call the Hammond order lattice—
where order-extensions of the Hammond order (i.e. more complete relations)
may be derived. Defining this space is useful, as it enables the researcher to
better understand how various order relations compare pairs of distributions in
the context of socioeconomic surveys. The Hammond order lattice then provides a
straightforward method of deriving relations that may be more, or less, complete
than the Hammond order. This lattice is founded on the linear independence
property of the vectors that constitute the minimal Hilbert basis, and is thus
easily generalizable in other contexts.

Finally, in deriving the minimal Hilbert basis of the Hammond order cone, we
present a result due to Giles and Pulleyblank (1979) that enables the construc-
tion of an integral Hilbert basis of a general pointed rational cone. The resulting
Hilbert basis is the set of integral vectors 2 contained in a set, called the paral-
lelotope associated with the cone. We note that having a method of constructing
an integral Hilbert basis of a rational cone is important, in that it enables a wider
application of the equivalence theorem of Magdalou (2021) in various contexts.

More generally, because minimal Hilbert bases provide parsimonious represen-
tations of the set of integral vectors that belong to a cone, they are important to
characterize in a variety of contexts. In the context of distributional analysis, a
minimal Hilbert basis enables the researcher to identify the smallest set of vectors
that generate the order relation (the so-called irreducible transfers) in contrast
with the set of composite transfers (vectors constructed using positive integer
combinations of the irreducible transfers). In integer programming for instance,
minimal Hilbert bases may be used to identify sequences of vectors that are feasi-
ble, given the constraints of the underlying problem, and that improve the value
of the objective function. Consider statistical inference for order relations defined
on convex cones. When undertaking Monte Carlo simulation (drawing random
vectors inside a cone), there is in this context a substantial computational gain
from working with a minimal Hilbert basis: any randomly generated integral vec-
tor can be constructed in a parsimonious fashion by taking a weighted positive
integer sum of the vectors of the basis. As such, minimal Hilbert bases may well
take on a prominent role in the exploration of statistical properties of tests for
order relations defined on convex cones.

A word of clarification is due regarding the terminology of minimal Hilbert

2An integral vector is a vector whose components are all integers.

3



bases. The resulting integral Hilbert basis constructed from the parallelotope
method of Giles and Pulleyblank (1979) is in general a superset of the Hilbert
basis concept discussed in Magdalou (2021). For this reason, the present paper
follows a well-established literature in the mathematical sciences (e.g. Gruber,
2007) of distinguishing between a general integral Hilbert basis of a convex cone,
and a minimal Hilbert basis—the basis concept that underlies the fundamental
equivalence theorem of Magdalou (2021).

After reviewing key concepts and definitions in Section 2, we turn in Section 3
to the characterization of the minimal Hilbert basis of the Hammond order cone.
We then introduce in Section 4 a class of maximal linearly independent Hilbert
bases. There, we discuss the method of extracting the partial sums, the numerical
implementation criterion, from the specific minimal Hilbert basis. The results of
this section, together with their limitations, are then illustrated in the context of
the Hammond order cone, together with two other order relations introduced in
Gravel et al. (2021). Section 5 discusses the Hammond order lattice and Section
6 concludes. An appendix gathers proofs of various results.

2. The Hammond order cone

The approach we will pursue in this section is to define a general relation �
on a convex cone C, the associated parallelotope, and Hilbert basis of the set
of integral points of this cone. Subsequently, we shall specialize the relation to a
rational cone3 associated with the Hammond order, and each integral vector of the
rational cone will take the form of a difference between two distributions pertaining
to a variable defined on k ordered socioeconomic states. The purpose of starting
from a general perspective is to enable a distinction between properties that are
specific to any convex cone, and those that are specific to the cone associated with
the Hammond order.

In what follows the sets Z, Q and R respectively denote the integers, rationals
and real numbers. We let Z+ := {0, 1, 2, ...} denote the non-negative integers, and
we likewise define the sets Q+ and R+. We begin this section by recalling a few
concepts pertaining to order relations. A relation � on Rd is called a preorder
if it is transitive and reflexive, and a partial ordering if it is transitive, reflexive
and antisymmetric 4. A relation � is additive if for all x, y, z ∈ Rd, x � y implies

3A cone is said to be a rational cone if it is positively spanned by a set of rational vectors.
See Definition 1 below.

4A relation � on Rd is called transitive if x � y and y � z imply x � z for all x, y, z ∈ Rd,
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x+ z � y+ z. Finally, the relation � is scale invariant if for all x, y ∈ Rd, and for
all λ > 0, there holds x � y implies λx � λy. Following Marshall et al. (1967),
an additive and scale invariant partial order relation � may be associated with a
pointed convex cone 5 C ⊆ Rd, whereby x � y if and only if x− y is a vector that
belongs to the convex cone C. Under such circumstances, we more simply refer to
the relation � as an order induced by a convex cone, or a cone ordering.

In this paper, we shall characterize a minimal Hilbert basis of a rational cone
C in relation to a positive spanning set :

Definition 1 Let V:= {v1, . . . , vq} denote a finite set of rational vectors in
d-dimensional space Qd. Then,

(i) The positive span of V is the set of all positive linear combinations of
v1, . . . , vq:

pos(V) :=
{
λ1v

1 + · · ·+ λqv
q : λ1, . . . , λq ∈ R+

}
(2.1)

(ii) The set V is said to positively span a rational cone C if pos(V) = C.

Note in particular from (i) that any finite set of rational vectors V is associated
with a rational cone pos(V).

For the purpose of characterizing those integral vectors that belong to the
rational cone C, we introduce the following notions of a Hilbert basis.

Definition 2 A Hilbert basis of a finitely generated cone C ⊆ Rd is a set of
vectors {h1, . . . , hm}⊆ C such that each vector z ∈C ∩ Zd is expressible in the form
of a positive integer combination z = θ1h

1+ · · ·+ θmh
m, with θ1, . . . , θm ∈ Z+. A

Hilbert basis {h1, . . . , hm} is said to be integral if {h1, . . . , hm}⊆ Zd. A Hilbert
basis {h1, . . . , hm} is minimal if it is not a superset of any other Hilbert basis of
the cone C.

Let 0d denote a vector of zeroes in Rd. The following result provides the link
between the concepts of integral Hilbert basis and positive spanning set of a
rational cone (Giles and Pulleyblank, 1979; Gruber, 2007 p. 349-350).

Lemma 1 Let C ⊆ Rd be a pointed rational cone, and let V:= {v1, . . . , vq} be
a set of vectors such that pos(V) = C. Associate with V a bounded set

P :=
{
λ1v

1 + · · ·+ λqv
q : 0 ≤ λ1, . . . , λq ≤ 1

}
(2.2)

reflexive if x � x for all x ∈ Rd, and antisymmetric if x � y and y � x imply x = y for all x, y ∈
Rd.

5Let 0d ∈ Rd denote a vector of zeroes. A cone C in Rd is said to be pointed if for all x ∈ C
such that x,−x ∈ C there holds x = 0d.
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(i) Define {h1, . . . , hm} as follows:
{
h1, . . . , hm

}
:= P ∩ Zd,

then the set {h1, . . . , hm} is an integral Hilbert basis of the cone C.
(ii) The set
{
h ∈ C ∩ Zd \ {0d} : h is not a sum of integral vectors from C ∩ Zd \ {0d}

}

is the unique minimal Hilbert basis of the cone C.

The set P is often referred to as a parallelotope. The result outlined in Lemma
1 thus constructs the integral Hilbert basis of the rational cone C as the set of
integral vectors contained in the associated parallelotope. Because P is bounded,
it contains a finite set of integral vectors, and accordingly, every pointed rational
cone is associated with a (finite) Hilbert basis. Vectors h in part (ii) of the lemma,
that are not sums of non-zero integral vectors, will be referred to as irreducible.
The minimal Hilbert basis can thus be interpreted as the smallest set of integral
vectors that is required in order to positively span the entire set C ∩ Zd.

To give a simple example in two dimensional space, consider a cone C :=
pos({v1, v2}), where v1 := (1, 0)′ and v2 := (0, 2)′. Then P := {λ1v1 + λ2v

2 : 0 ≤
λ1, λ2 ≤ 1} is the parallelotope associated with C, and the integral Hilbert basis of
this cone, P ∩Z2, is given by the set of integral vectors {02, h1, h2, h3, h4, h5} ,
where h1 := v1, h2 := 1

2
v2, h3 := v2, h4 := v1 + 1

2
v2 and h5 := v1 + v2. The

irreducible vectors associated with this basis are h1 and h2, and accordingly the
minimal Hilbert basis of C is given by the subset {h1, h2}.

We now turn our attention to the comparison of certain types of integral vectors
in Rk, that we shall refer to as distributions. Let Dkn denote the set of distributions
of counts pertaining to n data points, defined on k ordered socioeconomic states:

Dkn :=
{
x ∈ Zk+ : x1 + · · ·+ xk = n

}
, (2.3)

where i = 1 denotes the worst socioeconomic state, and i = k indexes the highest
state. For instance, the European statistical agency EUROSTAT collects data on
self-assessed health, asking respondents in each participating country to choose
one of five possible assessments: very bad, bad, average, good, or very good. The
state i = 1 then corresponds to a very bad health, while i = k pertains to a state
of being in very good health. For example, y = (1, 2, 0, 0, 97) is an element of Dkn,
where k = 5, n = 100, one person rates herself to be in very bad health, two rate
themselves to be in bad health, and 97 respondents rate their health as very good.
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Consider the following subspace of Rk:

Sk :=
{
s ∈ Rk : sk = −(s1 + · · ·+ sk−1)

}
(2.4)

As it is the case that for each pair of distributions x and y in Dkn, x−y is an integral
vector in the space Sk, this space will play a prominent role in our discussion. It
is important to observe for results to follow that the maximum size of a linearly
independent set in Sk is equal to k − 1; that is, the dimension of Sk is equal to
k − 1.

Consider a social planner whose preferences are defined by a relation �G,
associated with a cone CG ⊆ Rk. A social welfare function W : Rk → R is
order-preserving for the relation �G. Specifically, when used to compare pairs of
distributions x, y ∈ Dkn, x �G y implies that social welfare is higher under the
dominant distribution: W (x) ≥ W (y). At an abstract level, the set of transfor-
mations of a distribution y ∈ Dkn that a social planner considers to improve social
welfare, defines the set of transfers. Following Magdalou (2021), a finite set of
vectors TG : = {g1, . . . , gq} is a set of transfers if for all g ∈ TG,

[T1] g can be written as the difference between two distributions in Dkn, and

[T2] g ∈ TG implies −g /∈ TG.

Observe from [T1] that each g ∈ TG is a rational vector, and from [T2] that the
cone CG := pos(TG) is pointed. It follows therefore from [T1] and [T2] that the set
of transfers TG positively spans a pointed rational cone CG := pos(TG), associated
with the relation �G. Finally, let x and y be two distributions in Dkn, such that

for λ1, ..., λq ∈ Z+ and vectors g1, ..., gq ∈ TG, we can write x− y =
q∑
s=1

λsg
s. Then

it is the case that x − y is an integral point of the rational cone CG, and that
x �G y.

We now describe the set of transfers associated with the Hammond order,
introduced by Gravel et al. (2021)6. In the context of this specific relation,
k ≥ 3 and there are two types of transformations of the distribution of counts
x = (x1, ..., xk)

′ that may be taken to improve social welfare: increments capture
the Paretian property, and Hammond transfers capture the egalitarian property of
the social welfare function (see also Hammond, 1976). Let x, y be two distributions
in Dkn. We say that x = (x1, ..., xk)

′ is obtained from y = (y1, ..., yk)
′ via an

increment if for some index i ∈ {1, ..., k−1}, there holds xi = yi−1, xi+1 = yi+1+1

6Two further relations founded on Hammond’s equity principle, that are introduced in Gravel
et al. (2021), are discussed more briefly in Section 4.2 of this paper.
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and xj = yj for all j �= i, i+1. We say that x is obtained from y via an egalitarian
Hammond transfer if for indices h < i ≤ j < l in the index set {1, ..., k} there
holds xh = yh − 1, xi = yi + 1, xj = yj + 1, xl = yl − 1 and xm = ym for all
m �= h, i, j, l. When i = j, this definition specializes a Hammond transfer to the
form xh = yh − 1, xi = yi + 2, xl = yl − 1 and xm = ym for all m �= h, i, l.

For example, if y = (1, 2, 0, 0, 97)′ and x = y+(−1, 1, 0, 0, 0)′ = (0, 3, 0, 0, 97)′,
then x is obtained from y via a single increment. On the other hand, if x =
y + (−1, 1, 0, 0, 0)′ + (0,−1, 0, 2,−1)′, that is, x = (0, 2, 0, 2, 96)′, we say that x is
obtained from y via an increment and a progressive Hammond transfer.

Let TI denote the set of increments and TE the set of Hammond progressive
transfers. We define the set of transfers TH associated with the Hammond order
as TH := TI ∪ TE.

Example 1 (the set of welfare improving transfers)
We describe the set of welfare improving transfers, that is all vectors in TH = TI

∪ TE, in the context of k = 4 socioeconomic states.
The set of increments is given by the following three vectors:

TI =








−1
1
0
0


 ,




0
−1
1
0


 ,




0
0
−1
1








.

The set of egalitarian Hammond transfers is given by the following five vectors:

TE =








−1
1
1
−1


 ,




−1
2
0
−1


 ,




−1
0
2
−1


 ,




−1
2
−1
0


 ,




0
−1
2
−1








.

We shall return to this example in Section 3. ♦

We may now define the Hammond order cone as the positive span of the set
of transfers TH :

CH :=

{
q∑

s=1

θsτ
s : θ1, ..., θq ∈ R+, τ1, ..., τ q ∈ TH

}
(2.5)

Because the set of transfers TH satisfies the defining properties [T1] and [T2],
there results that the Hammond order cone is a pointed rational cone. Let x and
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y be two distributions in Dkn, such that x �H y. Then following Gravel et al.
(2021), we define x to be the dominant distribution, and the statement x �H y is
definitionally equivalent to x being obtained from y via a number of incremental
and egalitarian transfers; that is all transformations in TH = TI ∪ TE.

Because each transfer vector τ ∈TH is an integral vector in Sk, we furthermore
have that

TH ⊆ S
k ∩ Zk. (2.6)

An important question that arises when the spanning vectors in TG are integral,
is whether TG contains an integral Hilbert basis of the cone CG. For the purpose
of investigating this property, we borrow from Magdalou (2021, Definition 3) the
following concept of a minimal set of transfers:

Definition 3 Let the set of vectors TG : = {g1, . . . , gq} positively span the
cone CG. We shall say that the set of vectors TG is minimal if TG contains an
integral Hilbert basis of CG.

Following Gruber (2007), we shall call the set of points CH ∩ Zk, the integral
points of the Hammond order cone. Amongst establishing other properties, the
characterization of the minimal Hilbert basis of the Hammond order cone will
enable us to study the relation between the set of integral points CH ∩ Zk on
the one hand, and between the set of pairs of distributions x, y ∈ Dkn such that

x = y +
q∑
s=1

µsτ
s, where µ1, ..., µq ∈ Z+, and τ 1, ..., τ q ∈ TH .7 We shall see in the

next section of the paper that the minimality of TH is fundamental in clarifying
the relation between these two sets.

3. Minimal Hilbert basis

From Definition 2, it follows that the integral points of the Hammond order cone
are expressible using various positive integer combinations of the set of vectors
that constitute the Hilbert basis. It is possible, therefore, to define every such
point a ∈CH ∩ Zk as the image of a map from a set of positive integers into the
set of distributions Dkn.

For non-negative integers γ1, ..., γk−1, consider then the mapping zH : Z
k−1
+ →

Sk ∩ Zk defined as follows:

7See Magdalou (2021) for a thorough discussion of the relation between these two sets in a
general abstract setting.
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zH(γ1, ..., γk−1) :=
(
−γ1, 2γ1 − γ2, ..., 2γk−2 − γk−1, γk−1 − (γ1 + · · ·+ γk−2)

)

(3.1)
Consider furthermore the family of vectors

ZH :=
{
zH(γ1, ..., γk−1) : γ1, ..., γk−1 ∈ Z+

}
. (3.2)

In Lemma 2 below, we shall show that every vector τ in the set of transfers TH,
can be written as the image of some point (γ1, ..., γk−1) by the map zH(). In
Proposition 3, we shall show that the minimal Hilbert basis of the Hammond
order cone is given by k− 1 such vectors zH(γ1, ..., γk−1) in the set ZH . We begin
the task of constructing the minimal Hilbert basis by studying some properties of
the map zH() of (3.1).

It is readily verified that for any integer α ∈ Z+ and for any vectors µ, θ ∈ Zk−1+ ,
the following two properties hold:

zH(αµ1, ..., αµk−1) = αzH(µ1, ..., µk−1) (L1)

zH(µ1 + θ1, ..., µk−1 + θk−1) = zH(µ1, ..., µk−1) + zH(θ1, ..., θk−1). (L2)

From these, it follows in turn that the setZH is generated by k−1 elements, namely
zH(1, 0, ..., 0), zH(0, 1, 0, ..., 0), ...., and zH(0, ..., 0, 1). The family of vectors ZH will
simplify our task of constructing the minimal Hilbert basis of the Hammond order
cone.

Lemma 2 For each vector τ in the set of transfers TH, there exist positive
integers µ1, ..., µk−1 such that τ = zH(µ1, ..., µk−1) ∈ ZH.

That is, for example, we can construct the egalitarian transfer vector τ =
(−1, 1, 0, 1,−1)′ of TH ⊆ S5∩Z5 as follows: τ = zH(µ1, ..., µ4), where (µ1, ..., µ4) =
(1, 1, 2, 3). We next characterize the minimal Hilbert basis of the Hammond order
cone.

Proposition 3 Let CH denote the Hammond order cone (2.5) and ZH the
family of vectors (3.2).

(i) The minimal Hilbert basis of the Hammond order cone consists of the set
of k − 1 vectors BH =

{
t1, . . . , tk−1

}
⊆ Sk ∩ Zk, where

t1 := zH(1, 0, ..., 0),
t2:= zH(0, 1, 0, ..., 0),

...
tk−1 := zH(0, ..., 0, 1).

(3.3)

10



( ii) The set of integral vectors in the Hammond order cone is the family of vectors
ZH .

The proof of (i) of this proposition consists in first constructing an integral
Hilbert basis of the Hammond order cone by identifying the integral vectors of
the associated parallelotope, and secondly in associating the minimal Hilbert basis
with the subset of non-zero irreducible vectors. Statement (ii) of the proposition
is then shown to follow from (i).

More generally, consider a set of transfers TG ⊆ Sk ∩ Zk and the associated
convex cone CG :=pos(TG). In this general context, the minimal Hilbert basis
and mapping zG() may be obtained by proceeding as follows. First, characterize
the set of integral points {a1, ..., am} in the parallelotope PG associated with the
set of transfers TG. From Lemma 1, the set of points {a1, ..., am} is an integral
Hilbert basis of the cone ordering CG. Next, characterize the subset {b1, ..., bl}
of irreducible elements from the integral Hilbert basis {a1, ..., am}. Again, from
Lemma 1, the vectors b1, ..., bl jointly constitute the minimal Hilbert basis of the
cone ordering CG. Then it is possible to construct a mapping zG : Z

l
+ −→ Sk ∩Zk

as
zG(θ1, ..., θl) := θ1b

1 + · · ·+ θlb
l, (3.4)

and to equate the set of integral points of the cone CG with the set of points
ZG := {zG(θ1, ..., θl) : θ1, ..., θl ∈ Z+} . The set ZG is generated by the l vectors
zG(1, 0, ..., 0), ..., zG(0, ..., 0, 1) that define the minimal Hilbert basis of the cone
CG.

One property that emerges from Proposition 3, is that the minimal Hilbert
basis of the Hammond order cone takes the form of a set of k − 1 linearly inde-
pendent vectors (see the illustrative example that follows for further detail). The
linear independence property will be put to good use in extending the results of
this paper to a general class of cone orderings (see Section 4). This independence
property will further prove useful in Section 5, where we introduce a space that
we call the Hammond order lattice.

Example 1 (continued)
Returning to the context k = 4 of Example 1, we may illustrate the result

of Proposition 3 as follows. First define the three spanning vectors zH(1, 0, 0) =
(−1, 2, 0,−1)′ := t1, zH(0, 1, 0) = (0,−1, 2,−1)′ := t2, and zH(0, 0, 1) = (0, 0,−1, 1)′

:= t3.
It is routinely verified that these three vectors are linearly independent, and

therefore irreducible. For the remaining five vectors of the set of transfers associ-
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ated with the Hammond order cone, we obtain:

(−1, 1, 0, 0)′ = t1 + t2 + 2t3

(0,−1, 1, 0)′ = t2 + t3

(−1, 1, 1,−1)′ = t1 + t2 + t3

(−1, 2,−1, 0)′ = t1 + t3

(−1, 0, 2,−1)′ = t1 + 2t2 + 2t3

(3.5)

Thus, while the eight vectors in the set TH jointly characterize an integral Hilbert
basis of the Hammond order cone of Example 1, the unique minimal Hilbert basis
is given by the set BH = {t1, t2, t3}. ♦

One immediate application of the minimal Hilbert basis of the Hammond order
relation is to enable a distinction between the irreducible transfers (the vectors of
the minimal Hilbert basis) and those other transfers that arise as positive integer
combinations of vectors of the minimal Hilbert basis. Returning to Example 1,
t1= (−1, 2, 0−1)′ and t2= (0,−1, 2,−1)′ are examples of irreducible transfers. On
the other hand, τ = (−1, 1, 1,−1)∈ TH is a combination of irreducible transfers,
in the sense that τ = t1+t2+t3. We call τ , and other positive integer combinations
of irreducible transfers, composite transfers.

From Proposition 3, it emerges that the minimal Hilbert basis of the Hammond
order cone arises as a subset of the set of transfers. That is, the set of transfers
TH is minimal in the sense of Magdalou (2021) and Definition 3. In turn, it is
therefore possible to express the integral vectors of the Hammond order cone as
integer combinations of the elements of the set of transfers:

CH ∩ Z
k =

{
q∑

s=1

µsτ
s : µ1, ..., µq ∈ Z+, τ1, ..., τ q ∈ TH

}
(3.6)

The minimality of the set of transfers TH then enables us to equate the integral
points of the Hammond order cone CH with pairs of distributions (x, y) such that
x has higher social welfare than y.

4. The partial sums of the Hammond order relation

To render a cone ordering implementable on survey data, a criterion is needed
to enable the data analyst to deduce which (if any) of two distributions x and y
exhibits higher social welfare. Such an implementable criterion has been derived
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in Theorem 3 of Gravel et al. (2021), where the authors show that x dominates y
if and only if k − 1 partial sums inequalities are satisfied:

x �H y ⇐⇒
j∑

i=1

2j−i(xi − yi) ≤ 0 for all j = 1, . . . , k − 1. (4.1)

Proposition 4 below shows that this numerical representation of the Hammond or-
der relation is readily available from the minimal Hilbert basis. The result linking
the minimal Hilbert basis to the implementation criterion, is further generalized
in Proposition 5 in the context of a family of cone orderings.

For any vector a ∈ Zk, associate a with a vector â = (a1, . . . , ak−1)
′∈ Zk−1.

Via this transformation, it will be meant that â is the projection of a on its first
k − 1 coordinates.

Proposition 4 Let x and y be two distributions in Dkn, and let x̂, ŷ, re-
spectively denote the projection of x and y on their first k − 1 coordinates. For
each vector ti in the minimal Hilbert basis BH, likewise define t̂i as the projection
of ti on its first k − 1 coordinates, and construct the matrix B ∈ Z(k−1)×(k−1) as
B :=

(
t̂1, · · · , t̂k−1

)
. Then, there holds x �H y if and only if −B−1(x̂−ŷ) ≤ 0k−1.

Proof Let x and y denote two distributions in Dkn, such that

x− y =

q∑

s=1

θsτ
s

with θ1, ..., θq ∈ Z+ and such that τ 1, ..., τ q ∈ TH . From Proposition 3, the vectors
t1, . . . , tk−1 constitute a minimal Hilbert basis for the Hammond order cone CH ,

so that it is also the case that for some µ1, ..., µk−1 ∈ Z+ we have x−y =
k−1∑
j=1

µjt
j.

Observe from Lemma 2 and Proposition 3 that the elements bij of the matrix
B all take values in the set {−1, 0, 2}. Therefore, B is of the form

B =




−1
2 −1
0 2 −1
...

. . . . . . . . .

0 · · · 0 2 −1




, (4.2)

where the above diagonal blank entries of the matrix are all zero elements, so that
B is lower-triangular. It is readily verified that the matrix B is invertible, and
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furthermore that B−1 = −A, where A is the matrix of the form

A =




1
2 1
4 2 1
...

. . . . . . . . .

2k−2 · · · 4 2 1




(4.3)

Gathering the positive integers in a vector µ := (µ1, . . . , µk−1)
′, we obtain the

following equivalent statements:

x− y =

k−1∑

j=1

µjt
j �

x̂− ŷ = Bµ �

B−1(x̂− ŷ) ≥ 0k−1 �

A(x̂− ŷ) ≤ 0k−1 �
j∑

i=1

2j−i(xi − yi) ≤ 0 for all j = 1, . . . , k − 1⇐⇒ x �H y.

where the last equivalence is the result (4.1) from Gravel et al. (2021), Theorem
3, (a)⇐⇒ (c). QED

4.1. A class of maximal linearly independent Hilbert bases

In order to better understand the specific properties of the Hammond cone that
underlie the above result relating the partial sums to the vectors of the minimal
Hilbert basis, we first take a closer look at a simple example: the order �I induced
by the set of increments TI , otherwise known as first order stochastic dominance
in the context of a variable defined on k ordered socioeconomic states. We then
generalize the discussion to a more general class of cone orderings.

Returning to Example 1, denote the three vectors defining the set TI of in-
crements as follows: p1:= (−1, 1, 0, 0)′, p2:= (0,−1, 1, 0)′, and p3:= (0, 0,−1, 1)′.
We then associate the relation �I with a pointed rational cone CI := pos(TI). It
is readily verified in this simple case that the minimal Hilbert basis of the set of
discrete points CI ∩ Z4 coincides with the set of transfers: BI = {p1, p2, p3}. As
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in Proposition 4, we let the vector p̂ denote the first k − 1 components of p, and
proceed to construct the 3× 3 integral matrix PI := (p̂

1 p̂2 p̂3) . We thus deduce
that PI is invertible, and that QI = −P

−1
I is of the form

QI =



1
1 1
1 1 1


 . (4.4)

In the context of discrete first order stochastic dominance, it is a well known
result that for two distributions x and y in Dkn, there holds x �I y if and only
if QI(x̂ − ŷ) ≤ 0k−1 where QI takes the form of a (k − 1)-dimensional lower
triangular matrix of ones, or equivalently, in this example, if and only if x1 ≤ y1,
x1+ x2 ≤ y1+ y2 and x1+ x2+ x3 ≤ y1+ y2+ y3. That is, in the case of the cone
ordering �I , as is the case in the context of the Hammond ordering, inversion of a
matrix easily extracted from the minimal Hilbert basis also produces the desired
numerical representation of the order relation.

The common property the two minimal Hilbert bases BI and BH share, is
that they belong to a class of bases constructed from sets of maximal linearly
independent vectors. We define this class as follows:

Definition 4 A minimal Hilbert basis B is said to belong to the set of maximal
linearly independent Hilbert bases of Sk ∩ Zk if B belongs to the set

M : =
{{

b1, . . . , bk−1
}

is a minimal Hilbert basis in Sk ∩ Zk :

b1, . . . , bk−1 are linearly independent.
}

(4.5)

The set of bases we consider therefore has three defining properties: (i) each vector
bi of the basis is an integral vector of the (k−1)-dimensional subspace Sk, (ii) the
basis B consists of k − 1 vectors, and (iii) the vectors of the basis B are linearly
independent. Proposition 4 is generalized below in relation to a minimal Hilbert
basis that belongs to the setM, but is otherwise not explicitly specified.

Proposition 5 Let �M be a cone ordering associated with a pointed rational
cone CM ⊆ Rk. Assume that the set of integral vectors CM∩Zk is associated with a
minimal Hilbert basis BM =

{
p1, . . . , pk−1

}
⊆ Sk∩Zk, such that BM is an element

of the set M of maximal linearly independent Hilbert bases. Then, defining the
matrix P :=

(
p̂1 · · · p̂k−1

)
∈ Z(k−1)×(k−1),

(i) the matrix P is invertible, and

(ii) for all distributions x and y in Dkn, there holds x �M y if and only if
−P−1(x̂− ŷ) ≤ 0k−1.
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4.2. Hammond order trilogy

In order to better understand the crucial role played by the linear independence
property of the class M of Hilbert bases of Sk ∩ Zk, we examine two further
cone orderings that were introduced in Gravel et al. (2021) together with the
Hammond order �H

8.
Let x, y be two distributions in Dkn. We say that x = (x1, ..., xk)

′ is obtained
from y = (y1, ..., yk)

′ via a decrement if for some index i ∈ {2, ..., k}, there holds
xi = yi−1, xi−1 = yi−1+1 and xj = yj for all j �= i, i−1. Let TD ⊆ Sk ∩ Zk denote
the set of decrements. Together with the Hammond order cone CH =pos(TI ∪TE),
we consider two further cones

CE : = pos(TE) (4.6)

CF : = pos(TD ∪ TE). (4.7)

CE is the cone spanned by the set of egalitarian Hammond transfers. The cone
CF , spanned by the union of the set of decrements and Hammond transfers, has
a structure that is very similar to that of the Hammond order cone, as we shall
see in Example 2 below. Associate with each of CE and CF , order relations �E
and �F on Rk. Observe then, as discussed in Gravel et al. (2021), that the cone
ordering �E is the intersection of the relations �H and �F .

One application of the classM of Hilbert bases (4.5) consists in deriving the
partial sums associated with the order relation �F , a result obtained in Theorem
4 of Gravel et al. (2021). Specifically, let x and y denote two distributions in Dkn.
The authors show that x dominates y if and only if the following k − 1 partial
sums inequalities are satisfied:

x �F y ⇐⇒
k∑

i=j

2i−j(xi − yi) ≤ 0 for all j = 2, . . . , k. (4.8)

We propose a different derivation of this result, that arises as an application of
Proposition 5. First, we derive the minimal Hilbert bases of the cones CE and CF ,
via the parallelotope method outlined in Lemma 1.

Proposition 6 (a) Let CE = pos (TE) denote the cone of egalitarian Ham-
mond transfers. The minimal Hilbert basis BE of the cone CE consists of the set

8I thank a reviewer for suggesting the discussion around these two order relations, as well as
Example 2 below.
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of vectors of the form

e := (0j−1,−1,0h−1, 2,0l−1,−1,0k−(j+h+l))
′ (4.9)

where j, h and l are strictly positive integers, such that j+ h+ l ≤ k. For k ≥ 3,
there are k(k − 1)(k − 2)/6 such vectors in the minimal Hilbert basis.

(b) Let CF = pos (TD ∪ TE) denote the cone of decrements and egalitarian
Hammond transfers. The minimal Hilbert basis BF of the cone CF consists of the
following k − 1 linearly independent vectors:

f 1 : = (1,−1, 0, . . . , 0)′

f 2 : = (−1, 2,−1, 0, . . . , 0)′

f 3 : = (−1, 0, 2,−1, 0, . . . , 0)′ (4.10)
...

fk−1 : = (−1, 0, . . . , 0, 2,−1)′.

Let l := k(k − 1)(k − 2)/6 (l is the number of vectors in the minimal Hilbert
basis of the cone CE). It is then possible to construct a mapping zE : Z

l
+ −→ Sk∩Zk

as
zE(θ1, ..., θl) := θ1e

1 + · · ·+ θle
l, (4.11)

and to equate the set of integral points of the cone CE with the set of points
ZE := {zE(θ1, ..., θl) : θ1, ..., θl ∈ Z+} . The set ZE is generated by the l vectors
zE(1, 0, ..., 0) = e1, ..., zE(0, ..., 0, 1) = el that define the minimal Hilbert basis of
the cone CE. For the cone CF , we likewise construct the mapping zF : Z

k−1
+ −→ Sk∩

Zk and the associated set of integral vectors ZF := {zF (θ1, ..., θk−1) : θ1, ..., θk−1 ∈
Z+} generated by the k − 1 vectors zF (1, 0, ..., 0) = f 1, ..., zF (0, ..., 0, 1) = fk−1.
We illustrate these results with the help of the following example.

Example 2

Return to the context of k = 4 socioeconomic states, discussed in Example
1. Then in the context of the order relation �F , the set of welfare improving
transfers is the set TF = TD ∪ TE. The following three vectors constitute the set
of decrements:
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TD =








1
−1
0
0


 ,




0
1
−1
0


 ,




0
0
1
−1








. (4.12)

The set of egalitarian Hammond transfers is the set of five vectors TE given in
Example 1. The same five vectors of TE define the entire set of transfers underlying
the order relation �E.

The set of vectors that constitute the minimal Hilbert basis of the cone CF
specializes (4.10) to the following three vectors:

f 1 = (1,−1, 0, 0)′

f 2 = (−1, 2,−1, 0)′ (4.13)

f 3 = (−1, 0, 2− 1)′.

and the map zF () specializes to zF (θ1, θ2, θ3) = (θ1−(θ2+θ3), −θ1+2θ2, −θ2+2θ3,
−θ3). The remaining five vectors of the set of transfers TF = TD ∪ TE are
composite transfers in the sense that they arise as positive integer combinations
of f 1, f 2, and f 3:

(0, 0, 1,−1)′ = 2f 1 + f 2 + f3

(0, 1,−1, 0)′ = f 1 + f 2

(−1, 1, 1,−1)′ = f 1 + f2 + f 3

(−1, 2, 0,−1)′ = 2f 1 + 2f 2 + f 3

(0,−1, 2,−1)′ = f1 + f 3

(4.14)

In the context of k = 4 socioeconomic states, the minimal Hilbert basis BE of
the cone of egalitarian Hammond transfers specializes to the following set of four
vectors:

e1 : = (−1, 2,−1, 0)′ = f2

e2 : = (−1, 2, 0,−1)′ = t1 (4.15)

e3 : = (−1, 0, 2,−1)′ = f3

e4 : = (0,−1, 2,−1)′ = t2.

The map zE() specializes to zE(θ1, θ2, θ3, θ4) = (−θ1 − θ2 − θ3, 2θ1 + 2θ2 − θ4,
−θ1+2θ3+2θ4, −θ2−θ3−θ4) and we observe that the vector (−1, 1, 1,−1) of the
set of transfers TE is composite, in the sense that (−1, 1, 1,−1) = e1 + e4. ♦
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Because the minimal Hilbert basis BF =
(
f1, . . . , fk−1

)
consists of k−1 linearly

independent integral vectors of the subspace Sk, BF belongs to the class of minimal
Hilbert bases of Definition 4. As such, it is possible to apply Proposition 5 in order
to derive the partial sums associated with the relation �F .

Note that the set of partial sums of Gravel et al. (2021), in the context of the
order relation �F , is expressed in terms of variables x2, ..., xk. Consider first the
following (k − 1)× (k − 1) upper triangular matrix:

PF =




−1 2 0 · · · 0

−1 2
. . .

...

−1
. . . 0
. . . 2

−1




. (4.16)

Observe that PF is a matrix extracted from the associated minimal Hilbert basis
BF , in the sense that column j of the matrix PF is of the form f̃ j := (f j2 , ..., f

j
k)
′.

That is, f̃ j the projection of the irreducible vector f j of the minimal Hilbert basis
on its second, to k-th, components 9. If we invert PF , and multiply by −1 the
resulting matrix, we obtain a matrix QF := −P

−1
F , of the form

QF =




1 2 22 · · · 2k−2

1 2 · · · 2k−3

1
...

. . .

1




. (4.17)

The resulting partial sums, for x, y ∈ Dkn are then of the form QF (x̃− ỹ) ≤ 0k−1,
that is the expression (4.8) of Gravel et al. (2021).

On the other hand, as illustrated in Example 2, the minimal Hilbert basis
BE of the cone of egalitarian Hammond transfers is not made of k − 1 linearly
independent vectors. As such BE is not an element of the class M of minimal

9We note that it is also possible to obtain an alternative set of partial sums by constructing PF
using the vectors f̂1, ..., f̂k−1, where f̂ j := (fj

1
, ..., f

j
k−1).When comparing a pair of distributions

x, y ∈ Dkn, this latter construction would entail a set of k − 1 partial sums to be applied to the
vector (x̂− ŷ) = (x1− y1, . . . , xk−1 − yk−1). We have opted instead for the construction based

on f̃ j := (fj
2
, ..., f

j
k) in order to obtain the partial sums of Gravel et al. (2021).
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Hilbert bases, and it is not possible to extract an invertible matrix from BE that
produces a set of partial sums for the order relation �E.

It is shown in Theorem 5 of Gravel et al. (2021) that for a pair of distributions
x, y in Dkn, x �E y if and only if the two sets of partial sum inequalities (4.1) and
(4.8) are satisfied. This result arises because x �E y implies that both x can be
constructed from y via a sequence of Hammond transfers and increments (that
is x �H y) and that x can be constructed from y via a sequence of Hammond
transfers and decrements (that is x �F y). As such, it must be possible to express
any vector e ∈ CE using either the k − 1 vectors t1, ..., tk−1 or f 1, ..., fk−1 that
define respectively the minimal Hilbert basis associated with the cones CH or CF .
In the appendix, we further explore this point in an extension of Example 2.

5. Hammond order lattice

Our final application of the minimal Hilbert basis of the Hammond order cone
is to introduce a space in which more complete relations (order extensions, in
technical jargon) of the Hammond order �H may be defined. Formally, a partial
ordering �G on Rk is an order extension of �H , if it is the case that for all x and
y such that x �H y, there also holds x �G y 10.

A geometric lattice L in Rk is the set of all integer (positive or negative) combi-
nations of k linearly independent vectors b1, . . ., bk∈ Rk.11 Because the maximum
size of a linearly independent set in Sk is equal to k−1, we may define a lattice in
association with the minimal Hilbert basis of the Hammond order cone as follows:

Definition 5 The Hammond order lattice LH ⊆ Rk is the set of all integer
(positive and negative) combinations of the k − 1 linearly independent vectors of
the minimal Hilbert basis BH :

LH :=
{
γ1t

1 + · · ·+ γk−1t
k−1 : γ1, . . . , γk−1 ∈ Z, t1, . . . , tk−1 ∈ BH

}
(5.1)

A square matrix U is said to be unimodular if it is integral, and det(U) ∈ {−1, 1}.
If (BH) is the matrix whose columns are the k − 1 vectors defining the minimal
Hilbert basis of the Hammond order lattice, then every other basis DH of the
Hammond order lattice relates to BH via the equality (DH) = (BH)U , for some

10For example, both relations �H and �F are order extensions of the relation �E associated
with the set of egalitarian Hammond transfers TE.

11See chapter 21 of Gruber (2007) for a general discussion of geometric lattices and their bases.
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unimodular matrix U ∈ Z(k−1)×(k−1). That is, all bases of the Hammond order
lattice are unique up to multiplication by a unimodular matrix.

It is clear from Proposition 3 that the set of integral points of the Hammond
order cone, CH ∩Zk, is a subset of the Hammond order lattice. The study of the
lattice however is particularly useful, since all order extensions of the Hammond
order cone are subsets of LH . Let TG ⊆ Sk ∩ Zk denote a set of transfers, and
associate with TG a cone CG :=pos(TG) as well as an order relation �G on Rk.

Proposition 7 Let the cone ordering �G on Rk be an order extension of the
Hammond order relation �H . Then,

(i) the set of integral points of the cone CH ∩Zk is a subset of CG ∩Zk. Fur-
thermore,

(ii) the set of integral points CG ∩Zk is a subset of the Hammond order lattice
LH .

As an illustrative example, consider the Hammond order �H in the simple case
where k = 3. Then, from Proposition 3, we can use the definition of the Hilbert
basis to write CH = pos{t1, t2} , where t1 := (−1, 2,−1)′ and t2 := (0,−1, 1)′. A
pointed cone CG associated with an order relation �G may be defined as CG :=
pos{g1, g2} , where g1 := (−1, 3,−2)′ and g2 := t2. That is, a social planner
with preferences given by �G views a movement of one person from the bottom
socioeconomic class toward the middle class, together with a movement of two
individuals from the top class toward the middle, as welfare improving. By ob-
serving that t1 = g1 + g2, it may be readily verified that CH ⊆CG, and that the
relation �G is an order extension of the Hammond order relation.

For example, take a pair of distributions x1 and y1 in D3n such that x1 − y1 =
(−1, 1, 0)′. Then we have x1−y1 = t1+t2, and furthermore x1−y1 = g1+2g2; hence
it is the case that x1 �H y1 and x1 �G y1. Next consider a pair of distributions
x2 and y2 such that x2 − y2 = (−1, 3,−2)′. Then, there holds x2 − y2 = g1, but
x2− y2 = t1− t2. In this second example, we then have x2 �G y2, while x2 and y2

are not comparable according to the relation �H , in accordance with statement
(i) of Proposition 7. Observe finally that because the minimal Hilbert basis of CG
is given by the vectors g1 = t1 − t2 and g2 = t2, any vector a ∈CG ∩ Z3 may be
written in the form a = γ1g

1+ γ2g
2 = γ1t

1+ (γ2− γ1)t
2 where γ1, γ2 ∈ Z+. That

is, the set of integral points CG ∩ Z3 are contained in the Hammond order lattice
LH , in accordance with (ii) of Proposition 7.
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6. Conclusions

In this paper we have characterized the minimal Hilbert basis of the Hammond
cone, and we have discussed several novel applications of this basis. We have shown
how to derive the implementation criterion of the Hammond order relation, the
k − 1 partial sums derived by Gravel et al. (2021), via the inversion of a matrix
that is extracted from the Hilbert basis. We have furthermore introduced a class
of maximal linearly independent Hilbert bases, from which it is similarly possible
to derive the implementation criterion from the minimal Hilbert basis. The basis
also enabled us to introduce a new space—that we have called the Hammond order
lattice—where order-extensions of the Hammond order may be derived.

We conclude by mentioning some limitations of cone orderings and their asso-
ciated Hilbert bases. One criticism that may be formulated, is that defining the
set of transfers in the form of a minimal Hilbert basis is lacking in transparency.
Returning to Example 1, while three vectors span the entire set of integral vectors,
there is certainly some work required in reconstructing the entire set of transfers
(three increments and five progressive Hammond transfers) from this basis. When
one considers it a priority to clarify the value judgements underlying a particular
relation used to order distributions, the set of transfers provides clarity that the
minimal Hilbert basis does not possess. More importantly, one must note that
order relations induced by cones are additive. As such, the results obtained in
this paper do not apply in the context of several important contributions in the
field, for instance Chateauneuf and Moyes (2006).

Appendix

Proof of Lemma 2We divide the proof in three parts. Firstly, letting 0n denote
an n-dimensional zero vector, we show that each increment vector of the form τ1 =
(0j−1,−1, 1,0k−(j+1)) ∈ TH is an element of the family ZH . Then, we consider
Hammond transfers of the form τ2 = (0j−1,−1,0h−1, 1,0l−1, 1,0m−1,−1,0k−(j+h+l+m)),
where j, h, k, l and m are arbitrary non-negative integers. Finally we consider
Hammond transfers of the form τ3 = (0j−1,−1,0h−1, 2,0l−1, 1,0k−(j+h+l)).

(i) Let τ1 = (0j−1,−1, 1,0k−(j+1)). Then τ1= zH(µ1, ..., µk−1) ∈ ZH where,

µi =





0, i = 1, . . . , j − 1
1, i = j

2i−(j+1), i = j + 1, . . . , k − 1
(6.1)

22



(ii) Consider next a generic Hammond transfer of the form τ2. Define the
following positive constants:

ω1 = 2
h − 1

ω2 = 2
lω1 − 1

ω3 = 2
mω2 + 1

(6.2)

Then τ2= zH(µ1, ..., µk−1) ∈ ZH where,

µi =





0, i = 1, . . . , j − 1
2i−j, i = j, . . . , j + h− 1

2i−(j+h)ω1, i = j + h, . . . , j + h+ l − 1
2i−(j+h+l)ω2, i = j + h+ l, . . . , j + h+ l +m− 1
2i−(j+h+l+m)ω3, i = j + h+ l +m, . . . , k − 1

(6.3)

(iii) Finally, consider a generic Hammond transfer of the form τ3. Define the
following positive constants:

κ1 = 2
h − 2

κ2 = 2
lκ1 + 1

(6.4)

Then τ3= zH(µ1, ..., µk−1) ∈ ZH where,

µi =





0, i = 1, . . . , j − 1
2i−j , i = j, . . . , j + h− 1

2i−(j+h)κ1, i = j + h, . . . , j + h+ l − 1
2i−(j+h+l)κ2, i = j + h+ l, . . . , k − 1

(6.5)

QED

Proof of Proposition 3 (i) Since CH = pos(TH), it follows from (i) of
Lemma 1 that a Hilbert basis of the Hammond order cone is given by the set of
integral vectors {h1, . . . , hm} contained in the parallelotope

PH :=
{
λ1τ

1 + · · ·+ λqτ
q : 0 ≤ λ1, . . . , λq ≤ 1

}
(6.6)

where τ1, . . . , τ q ∈ TH . That is, {h1, . . . , hm} = PH ∩ Zk.
In particular, because each transfer vector is integral, it follows that each

vector τ ∈ TH is an element of the Hilbert basis, and furthermore, for each vector
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(λ1, . . . , λq) ∈ {0, 1}
q , the vector f : = λ1τ

1 + · · ·+ λqτ
q is also an element of the

Hilbert basis.
We next characterize a vector of the general form

a := λ1τ
1 + · · ·+ λqτ

q 0 ≤ λ1, ..., λq ≤ 1. (6.7)

such that a is an integral vector of the parallelotope PH . Let {i1, ..., ih} and
{j1, ..., jl} denote two subsets from the index set {1, ..., q} , with i1 < i2 < · · · < ih
and, likewise, j1 < j2 < · · · < jl. On the basis of Lemma 2, there are integral vec-
tors (θ1, ..., θk−1) and (γ1, ..., γk−1) in Z

k−1
+ , such that

∑ih
s=i1

τ s = zH(θ1, ..., θk−1)

and
∑jl

s=j1
τ s = zH(γ1, ..., γk−1). Let N denote a set of positive integers, and

gcd(N ) denote the greatest common divisor of N . Define the greatest common
divisors θ̄ := gcd ({θ1, ..., θk−1}) and γ̄ := gcd

({
γ1, ..., γk−1

})
. If θ̄ > 1, then the

vector

g1 :=
1

θ̄

(
τ i1 + · · ·+ τ ih

)
(6.8)

is a vector of the form (6.7), and accordingly g1 is an element of the Hilbert basis.
If {i1, ..., ih} ∩ {j1, ..., jl} = ∅ (i.e. the sets of indices are non-overlapping) and
γ̄ > 1, then both

g2 : =
1

γ̄

(
τ j1 + · · ·+ τ jl

)
(6.9)

g3 : = g1 + g2

are likewise vectors of the form (6.7) and belong to the Hilbert basis 12. Sums of
three or more vectors of the form (6.7) can likewise be constructed in a similar
fashion.

We next characterize the subset of PH∩Zk that constitutes the minimal Hilbert
basis. From (ii) of Lemma 1, the minimal Hilbert basis is the subset of irreducible
elements from the set {h1, . . . , hm}� {0k} . Observe that

t1 = (−1, 2, 0, ..., 0,−1)′,
t2= (0,−1, 2, 0, ..., 0,−1)′,

...
tk−1 = (0, ..., 0,−1, 1)′;

(6.10)

12In Example 1 for instance,

a :=
1

2
(−1 0 2 − 1)′ +

1

2
(−1 2 0 − 1)′

is an element of the Hilbert basis.
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that is, t1, . . . , tk−1 are all elements of the set of transfers TH . It is readily
verified that the vectors t1, ..., tk−1 are linearly independent, and therefore irre-
ducible. To show that these vectors are the only non-zero irreducible elements of
the Hilbert basis, we recall from (3.3) that, by construction, t1 = zH(1, 0, ..., 0),
t2 = zH(0, 1, 0, ..., 0) , ..., t

k−1 = zH(0, ..., 0, 1). From Lemma 2, each integral vec-
tor in the Hammond order cone is a vector of the form zH(µ1, . . . , µk−1) with
µ1, . . . , µk−1 ∈ Z+. From the properties [L1] and [L2], it therefore follows that
t1, ..., tk−1 jointly generate the set of vectors zH(µ1, . . . , µk−1), and accordingly
constitute the entire set of non-zero irreducible elements of the Hilbert basis.

(ii) We must show that CH ∩ Zk = ZH . Let ζ be an integral vector in the
Hammond order cone. Then from statement (i) of the proposition, ζ can be
expressed as a positive integer combination of the vectors in the minimal Hilbert
basis. Therefore, ζ ∈ CH ∩Zk ⇔ ζ = µ1t

1+ · · ·+µk−1t
k−1 with µ1, . . . , µk−1 ∈ Z+

⇔ ζ = µ1zH(1, 0, ..., 0) + · · ·+ µk−1zH(0, ..., 0, 1) ⇔[L1] ζ = zH(µ1, 0, ..., 0) + · · ·+
zH(0, ..., 0, µk−1) ⇐⇒ [L2] ζ = zH(µ1, . . . , µk−1) ∈ ZH . That is, we have shown
that CH ∩ Zk = ZH , as was required. QED

Proof of Proposition 5 (i) Assume to the contrary that p1, . . . , pk−1 are
linearly independent yet P is not an invertible matrix. Then it must be that the
columns of P are linearly dependent, and (say) that for scalars (α2, . . . , αk−1) �=
(0, . . . , 0)

p̂1 = α2p̂
2 + · · ·+ αk−1p̂

k−1

For l = 1, . . . , k − 1, let
(
pl1, . . . , p

l
k

)
denote the elements of the vector pl, and

define the scalar−q := α2
(
p21 + . . .+ p2k−1

)
+ · · ·+αk−1

(
pk−11 + . . .+ pk−1k−1

)
. Then,

we would have that the k-dimensional vector

(
p̂1

q

)
is a linear combination

of the vectors p2, . . . , pk−1. But, by construction,

(
p̂1

q

)
= p1, and from the

assumption that the set of vectors p1, . . . , pk−1 in the minimal Hilbert basis are
linearly independent, p1 cannot be linearly spanned by p2, . . . , pk−1. Therefore, we
conclude that P is a full rank matrix, so that P−1 exists.

(ii) Given from (i) that the matrix P is invertible, the proof proceeds using
the same steps outlined in the proof of Proposition 4. QED

Proof of Proposition 6 (a) Since CE = pos(TE), it follows from (i)
of Lemma 1 that an integral Hilbert basis of the cone of Hammond egalitarian
transfers is given by the set of integral vectors {h1, . . . , hm} contained in the
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parallelotope

PE :=
{
λ1σ

1 + · · ·+ λsσ
s : 0 ≤ λ1, . . . , λs ≤ 1

}
(6.11)

where σ1, . . . , σs ∈ TE. That is, {h1, . . . , hm} = PE ∩ Zk.
We follow the steps of the proof of Proposition 3, and obtain an integral Hilbert

basis of CE. The basis {h1, . . . , hm} is made of the set of transfers TE together
with sums of elements from TE.

We complete the proof of (a) by proving the three statements (i), (ii) and (iii)
below.

(i) Vectors (4.9), i.e. vectors of the form e = (0j−1, −1,0h−1, 2,0l−1, 1,
0k−(j+h+l))

′, are irreducible elements of the integral Hilbert basis of CE.

(ii) Let j, h, l and r be arbitrary non-negative integers such that j+h+l+r ≤ k.
Vectors of the form

τ = (0j−1,−1,0h−1, 1,0l−1, 1,0r−1,−1,0k−(j+h+l+r))
′ (6.12)

are composite transfers of the integral Hilbert basis of CE.

(iii) There are k(k − 1)(k − 2)/6 irreducible vectors in the minimal Hilbert
basis BE.

To establish (i), we show on the basis of Lemma 1, that if e = a + b, where
a, b ∈ PE ∩ Zk, then either a = e and b = 0k, or b = e and a = 0k.

Let a = (a1, ..., ak)
′ and b = (b1, ..., bk)

′. Observe first that ei = 0, for indices
i = 1, ..., j−1. It then follows from (4.9) and the equality e = a+b that ai = bi = 0.
For i = j, there holds aj+ bj = −1. Given that a and b are integral vectors in
CE, it follows that one of two cases can hold, that we denote Case I and Case II
respectively. Under Case I, we have (aj, bj) = (−1, 0). Similarly, in Case II we
obtain that (aj, bj) = (0,−1).

Consider Case I. Then given that ei = 0 for all indices i = j + 1, ..., j + h− 1,
it follows that ai = bi = 0 for all i = j + 1, ..., j + h − 1. For i = j + h, there
holds ai+ bi = 2. Under Case I, it follows that aj+h ∈ {0, 2} while bj+h ∈ {−1, 0}.
We conclude that aj+h = 2 and bj+h = 0. Then given that ei = 0 for all indices
i = j + h+ 1, ..., j + h+ l − 1, it follows that ai = bi = 0 for all i = j + h+ 1, ...,
j + h+ l − 1.

For i = j + h + l, we have that ai + bi = −1. Under Case I, it follows that
aj+h+l ∈ {−1, 0} and bj+h+l ∈ {−1, 0}. We show that bj+h+l = 0. Assume to
the contrary that bj+h+l = −1 and aj+h+l = 0. Then, given that ei = 0 for all

26



i = j+h+l+1, ..., k, it follows similarly that ai = bi = 0 for all i = j+h+l+1, ..., k.
But then this implies that a1+· · ·+ak = 1 and b1+· · ·+bk = −1. This contradicts
the assumption that a and b are integral vectors of the cone CE, since for all u ∈ CE,
we require that u1 + · · ·+ uk = 0.

We conclude that under Case I, a = e and b = 0k. Under Case II, we arrive,
using the same argument, to the conclusion that b = e and a = 0k. This concludes
the proof of statement (i), namely that the vector e of (4.9) is irreducible.

Consider statement (ii). We show that there are two integral vectors a and b
in the cone CE�{0k} such that τ = a+ b, where τ is the vector (6.12).

Construct a = (a1, ..., ak)
′ as follows:

ai =





−1, i = j, j + h+ l
2 i = j + h
0 otherwise

(6.13)

and construct b = (b1, ..., bk)
′ as follows:

bi =





−1, i = j + h, j + h+ l + r
2 i = j + h+ l
0 otherwise.

(6.14)

Then it follows that τ = a + b, and accordingly τ is a composite transfer. This
concludes the proof of (ii).

To show statement (iii), we observe from (i) and (ii) that the minimal Hilbert
basis consists only of vectors of the form (4.9). For k ≥ 3, these vectors are
constructed by inserting k−3 zeroes to the vector (−1, 2,−1) in order to construct

a k-dimensional vector. There are
k!

(k − 3)!3!
= k(k − 1)(k − 2)/6 such ways to

insert k−3 zero elements in k cells (think of the different ways k−3 students can
occupy a classroom containing k seats).

We conclude that the minimal Hilbert basis of the cone of egalitarian Ham-
mond transfers consists of vectors of the form (4.9), and that BE contains k(k −
1)(k− 2)/6 such vectors. This completes the proof of part (a) of the proposition.
(b) The derivation of this result follows the same steps as the proof of Propo-

sition 3, and accordingly the details are omitted. QED

Proof of Proposition 7 (i) Let the partial order �G be an order extension
of the Hammond order relation �H . Then for every pair of distributions x and
y such that x �H y , there also holds, by definition, x�G y . Define the vector
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ε := x−y. Then ε is a vector in the set CH ∩Zk, and therefore from the assumption
that �G is an order extension of �H , it also follows that ε is an element of the
discrete cone CG ∩ Zk. Hence we have that CH ∩Zk⊆ CG ∩Zk as required.

(ii) Observe that a basis for the space Sk is given by the following set of k− 1
vectors:

BSk :=








1
0
...
0
−1




,




0
1
0
...
−1




, . . . ,




0
...
0
1
−1








(6.15)

It is clear that CG ∩Zk ⊆ Sk∩Zk. To show that the set of integral points CG∩Zk

is contained in the geometric lattice LH , we shall show that LH = Sk ∩Zk. Equiv-
alently, we shall show that the bases matrices (BSk) and (BH) are equal up to mul-
tiplication by a unimodular matrix. It is readily verified that (BSk) = − (BH)A,
where A is the lower triangular matrix defined in (4.3). As A is a unimodular
matrix, and (BSk) is a basis for the lattice Sk∩Zk we conclude that LH = Sk∩Zk.
Since the discrete cone CG ∩Zk is a set of points in Sk∩Zk, we have therefore
shown that CG∩Zk is a subset of the Hammond Hilbert lattice LH , as required.
QED

Example 2 (continued from Section 4.2)

We explore the possibility of expressing any vector e ∈ CE∩Zk using the k− 1
vectors t1, ..., tk−1 that define the minimal Hilbert basis associated with the cone
CH . The important point to observe, is that while CE is a subset of CH , one cannot
use the three generators t1, t2 and t3 of CH to generate any vector in CE, without
imposing restrictions on the integer combinations of t1, t2 and t3. Note first, on
the basis of Proposition 6, that any integral vector in the cone CE is a subset of
the set of vectors in the Hammond order cone, the subset being defined as follows:

CE ∩ Z
4
+ = {a ∈ CH , θ1, ..., θ4 ∈ Z+ : a = θ1e

1 + · · ·+ θ4e
4} (6.16)

Because the Hammond order cone is generated by the three vectors t1, t2, and t3,
it is certainly the case that for any integral vector a in the cone CE, we have that
there also exist three positive integers µ1, µ2, and µ3 such that

µ1t
1 + µ2t

2 + µ3t
3 = a = θ1e

1 + · · ·+ θ4e
4. (6.17)

It is then possible to solve for each of µ1, µ2, and µ3 as functions of (θ1, ..., θ4) ∈ Z
4
+.

This produces the desired restrictions any vector a constructed as a combination
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of Hammond transfers must satisfy:

µ1(θ1, ..., θ4) = θ1 + θ3 + θ4

µ2(θ1, ..., θ4) = θ2 + 2θ4 (6.18)

µ3(θ1, ..., θ4) = θ3 + 2θ4.

Observe for instance that unlike vectors of the Hammond order cone, it is not
possible for an integral vector a ∈ CE to have the form a = t3 13.

Similarly, it is possible to express any integral vector a in the cone of egalitar-
ian Hammond transfers using positive integer combinations of the vectors of the
minimal Hilbert basis of the cone CF . ♦
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