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Abstract

We consider the problem of a group of experts who have to rank
a set of candidates. Society’s optimal choice relies on experts’honest
judgments about the deserving ranking. However, experts’judgments
are impossible to verify. Moreover, experts’judgments do not entirely
determine their preferences. Then, experts might want to misreport
their judgments if, by doing so, some ranking that they like best is
selected. To solve this problem, we have to design a mechanism where
the experts interact so that the socially optimal ranking is imple-
mented. Whether this is possible depends on (1) how experts’judg-
ments are aggregated to determine the socially optimal ranking and
(2) how experts’preferences relate to their judgments. We state nec-
essary and suffi cient conditions on these two elements for the socially
optimal ranking to be implementable in dominant strategies and Nash
equilibrium. Then, we study the implementability of some widely
used judgment aggregation rules, including extensions of scoring and
Condorcet consistent voting rules. Finally, we propose a non-trivial
judgment aggregation rule that is Nash implementable.
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1 Introduction

Economics studies resource allocation. Resources can be allocated by mar-
kets, planners, or contests. However, on some occasions, resources are al-
located by evaluation. In these cases, experts gather to agree on a specific
ranking according to which resources will be allocated. Examples of this type
of situation include allocation of scholarships among students, distribution
of funds among universities, or distribution of prizes, medals, and awards
among the participants in a contest.
The typical structure of these problems is as follows. A group of ex-

perts has to rank candidates from best to worst. Different experts may have
different judgments about what the deserving ranking is. Society’s optimal
choice relies on those judgments, i.e., there is a social choice function (SCF)
that identifies the socially optimal ranking based on the experts’ (honest)
judgments. However, experts’judgments are impossible to verify. Moreover,
experts’ judgments do not entirely determine their preferences. Then, an
expert might want to misreport his judgment if, by doing so, some ranking
that he likes best is selected. To solve this problem, we have to design a
mechanism where the experts interact so that the socially optimal ranking is
implemented. It is essential to differentiate between the SCF and the mecha-
nism in this setting. The former reflects society’s objectives, while the latter
is the election procedure used in practice to implement these objectives.
Whether a given SCF is implementable may depend on (1) how the ex-

perts’preferences relate to their judgments, (2) the invoked game-theoretic
equilibrium concept, and (3) the properties of the SCF itself.
In order to define the relationships between an expert’s preferences and his

judgments, we say that an expert is impartial with respect to two candidates
x and y if the mechanism designer knows that, when comparing any two
rankings that only differ in the ranks of x and y who, moreover, are ranked
consecutively, the expert prefers the ranking where x and y are ranked among
them according to his judgment. We say that an expert favors x over y if the
mechanism designer knows that, when comparing any two rankings as defined
above, the expert prefers the ranking where x goes before y, regardless of his
judgment.1

Regarding the game-theoretic equilibrium concept, we start by study-

1It may also happen that the mechanism designer does not have any information about
the preferences of an expert with respect to x and y.
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ing dominant strategy implementation. A dominant strategy is optimal for
an expert regardless of the actions of others, and then, whenever possible,
implementation in dominant strategies is quite robust. Our first result iden-
tifies a necessary and suffi cient condition for an SCF to be implementable in
dominant strategies (Theorem 1). We call this condition unresponsiveness to
partial experts (UPE). It requires that if two candidates change their relative
positions in the socially optimal ranking, then at least one expert is impartial
with respect to them and changes his judgment about their relative positions
in the same way that the socially optimal ranking does.
Unfortunately, most reasonable SCFs do not satisfy UPE and therefore

are not implementable in dominant strategies, regardless of how the experts’
preferences relate to their judgments. Theorem 2 shows that, if an SCF satis-
fies unanimity (whenever all experts honestly believe that x is better than y,
then x must go before y in the socially optimal ranking) and non-dictatorship
(there is no dictator who always determine the socially optimal ranking), then
it is not implementable in dominant strategies, even in the most favorable sit-
uation where all experts are impartial with respect to all pairs of candidates.
Although Theorem 2 bears a close resemblance to Gibbard-Satterthwaite
Theorem (Gibbard, 1973; Satterthwaite, 1975), they are independent results
(see the discussion in Section 3).
Next, we consider Nash implementation. We identify a necessary condi-

tion that we call weak unresponsiveness to partial experts (WUPE), which
must hold for an SCF in order to be implementable in Nash equilibrium
(Theorem 3). This condition requires that, for the socially optimal rank-
ing to change, there must be at least one expert who changes his judgment
about the relative position of two candidates with respect to whom he is
impartial so that he goes from agreeing with the socially optimal ranking to
not agreeing with it on this matter.
WhetherWUPE is suffi cient for Nash implementation depends on how the

experts’preferences relate to their judgments. We present two results in this
regard. The first one shows that, unlike dominant strategies, having experts
who favor some candidates over others may facilitate Nash implementation.
In particular, if at least three experts have different friends (candidates they
would like to favor over all others) or different enemies (candidates they
would like to harm over all others), then WUPE is suffi cient for Nash im-
plementation (Theorem 4). However, having experts with friends or enemies
is not necessary for Nash implementation. For example, if all experts are
impartial with respect to all pairs of candidates, then WUPE plus a no veto
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condition are suffi cient for Nash implementation (Theorem 5).
Voting rules are some of the most widely used judgment aggregation pro-

cedures. Under the implicit assumption that individuals behave truthfully,
voting rules are often used as mechanisms. However, one can think of voting
rules as collective choice rules that reflect society’s objectives on what can-
didate should win. Given this interpretation, voting rules can be extended
to SCFs that rank candidates in two different ways: extended version (the
voting rule is applied once and the candidates are ranked according to the
points they get) and recursive version (the voting rule is applied to find the
winner; this candidate gets the first position in the ranking; then, we make
a new profile of judgments without the previous candidate and use it to find
the winner; this candidate gets the second position in the ranking; we repeat
this process until all candidates have been ranked).
We study whether the extended and recursive SCF versions of some well-

known voting rules are implementable in Nash equilibrium. Specifically, we
analyze three scoring voting rules (Plurality, instant-runoff, and Borda) and
two Condorcet consistent voting rules (Copeland and minimax). The results
are primarily negative, regardless of how the experts’preferences relate to
their judgments and what tie-breaking rule is used (Propositions 1 and 2).
However, there is a notable exception. The recursive versions of the two
Condorcet consistent voting rules are Nash implementable when there are
precisely three candidates, all experts are impartial with respect to all pairs
of candidates, and the tie-breaking rule satisfies specific properties (Theorem
6).
Finally, we propose a new and non-trivial SCF that, unlike what hap-

pens with the SCF versions of the voting rules analyzed, is implementable
in Nash equilibrium regardless of the number of candidates. We call it serial
pairwise comparison SCF. The ranking selected by this SCF results from a
sequence of pairwise comparisons of candidates that follows a known order
and only considers the judgments of those experts who are impartial with
respect to each pair. We show that the serial pairwise comparison SCF sat-
isfies WUPE (Proposition 3) and then, it is Nash implementable under the
suffi cient conditions stated above.

Related literature
Amorós (2009) is probably the closest paper to ours. It also analyzes a

model where a group of experts ranks a set of candidates. However, it as-
sumes that all experts have the same judgment about the deserving ranking.
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In this case, the only reasonable SCF selects the deserving ranking on which
all the experts agree. The paper studies necessary and suffi cient conditions
for the Nash implementability of this SCF. Amorós et al. (2002) analyze the
same model as Amorós (2009), assuming that each expert favors one can-
didate over all others while being impartial with respect to the rest. They
show that, under these restrictions on experts’preferences, it is possible to
Nash implement the SCF that selects the deserving ranking in which all the
experts agree.
There is a branch of the literature studying the problem of aggregating

judgments of experts who are imperfectly informed about the state of na-
ture and whose preferences may be different from the planner’s preferences
(e.g., Austen-Smith 1993; Gerardi et al., 2009; Bhattacharya and Mukher-
jee, 2013). In contrast to this literature, we do not assume that there is an
actual and imperfectly observed state of nature, but rather the state itself is
determined by the experts’judgments.
The present paper is also connected with the literature on information

transmission between informed experts and uninformed decision-makers (e.g.,
Krishna and Morgan, 2001; Wolinsky, 2002). In this literature, a decision-
maker tries to elicit as much information as possible from several experts. The
experts share the same preferences, which differ from the decision-maker’s.
Our paper is also related to some literature on strategic voting (e.g., Fed-

dersen and Pesendorfer, 1998; Duggan and Martinelli, 2001)). This literature
deals with decision-making by juries composed of strategic jurors who must
choose one of two alternatives. In these papers, jurors agree on the overall
objective, but they may disagree on which alternative best achieves that goal
based on differential information.

The remainder of the paper is structured as follows. Section 2 formally
introduces the model and definitions. Sections 3 and 4 discuss the neces-
sary and suffi cient conditions for dominant strategy and Nash equilibrium
implementation, respectively. Section 5 studies the Nash implementability
of extended and recursive SCF versions of voting rules. Section 6 presents
the serial pairwise comparison SCF. Section 7 concludes. All the proofs are
in the Appendix.
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2 The model

A groupE of n ≥ 2 experts must rank a set C ofm ≥ 2 candidates. A ranking
of candidates is a bijection π : C → {1, ...,m} mapping each candidate x to
its rank π(x). A natural way of representing rankings is as vectors. For
example, for C = {a, b, c}, the ranking π with candidate a as first, candidate
c as second, and candidate b as third is represented as π = acb. Let Π denote
the set of all possible rankings of candidates.
Each expert i has an (honest) judgment about what is the deserving

ranking of candidates, ρi ∈ Π. We say that expert i honestly believes that
candidate x is better than candidate y if x is ranked in a lower position than
y in ρi, i.e., ρi(x) < ρi(y).
A social choice function (SCF) is a function f : Πn → Π that aggregates

the experts’judgments to select the ranking that is considered to be socially
optimal. Abusing notation, for each profile of judgments ρ ∈ Πn, let πfρ ≡
f(ρ).
Experts have preferences over rankings that may depend on their judg-

ments. Let < denote the class of all complete, reflexive, and transitive pref-
erence relations over Π. A preference function for expert i is a mapping
Ri : Π → < that associates with each possible judgment ρi a preference
relation Ri(ρi) (the strict part of Ri(ρi) is denoted Pi(ρi)). If all preference
functions are possible, preferences may be completely unrelated to judgments.
In that case, there is no interesting way of selecting the ranking of candidates
based on experts’judgments. Then, we introduce some restrictions on the
family of admissible preference functions.
Let [C]2 denote the set of all possible pairs of candidates. An expert is

impartial with respect to a pair of candidates xy ∈ [C]2 if, when comparing
any two rankings that only differ in the ranks of x and y who are ranked
consecutively, he prefers the ranking where x and y are ranked among them
according to his judgment. An expert favors x over y if, when comparing any
two rankings as defined above, he prefers the ranking where x goes before y,
regardless of his judgment.
Each expert i is characterized by two disjoint and possible empty sets

Ii, Fi ⊂ [C]2 where:
(i) Ii is the set of pairs of candidates with respect to whom the mechanism

designer knows that i is impartial, and
(ii) Fi is the set of pairs candidates such that the mechanism designer

knows that i favors one over the other. In what follows, when we refer to a
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pair of candidates in Fi, we write first the name of the “favored”candidate,
i.e., if i favors x over y, we write xy ∈ Fi and if i favors y over x we write
yx ∈ Fi.
A preference function Ri : Π −→ < is admissible for expert i at (Ii, Fi)

if, for every ρi, π, π̂ ∈ Π such that there is xy ∈ [C]2 with:
(1) π(x) + 1 = π(y) = π̂(x) = π̂(y) + 1,
(2) π(z) = π̂(z) for every z ∈ C\{x, y}, and either
(3.1) xy ∈ Ii and ρi(x) < ρi(y), or
(3.2) xy ∈ Fi,
we have π Pi(ρi) π̂.

EXAMPLE 1 Suppose that C = {a, b, c}. Then, [C]2 = {ab, ac, bc} and
Π = {abc, acb, bac, bca, cab, cba}. Suppose that the mechanism designer knows
that expert i is impartial with respect to ab and favors c over b, i.e., Ii =
{ab} and Fi = {cb}. Because ab ∈ Ii, every admissible preference function
for i is such that (i) whenever ρi(a) < ρi(b) then abc Pi(ρi) bac and cab
Pi(ρi) cba, and (ii) whenever ρi(b) < ρi(a) then bac Pi(ρi) abc and cba
Pi(ρi) cab. Because cb ∈ Fi, every admissible preference function for i is
such that, for every ρi ∈ Π, cba Pi(ρi) bca and acb Pi(ρi) abc. Table 1
summarizes the requirements for an admissible preference function. Many
preference functions satisfy these conditions. For example, the requirements
do not determine whether abc Ri(ρi) cba or cba Ri(ρi) abc, whatever the
judgment ρi is. Similarly, if ρi ∈ {abc, acb, cab} then acb Pi(ρi) bac but if
ρi ∈ {bac, bca, cba} the requirements do no determine whether acb Pi(ρi) bac
or bac Pi(ρi) acb.

Ri : Π −→ <
If ρi ∈ {abc, acb, cab} If ρi ∈ {bac, bca, cba}
Ri(ρi) is such that Ri(ρi) is such that
...

...
...

...
...

...
...

...
abc cab cba acb bac cba cba acb
...

...
...

...
...

...
...

...
bac cba bca abc abc cab bca abc
...

...
...

...
...

...
...

...

Table 1 Admissible preference functions for expert i in Example 1.
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If an expert is impartial with respect to all pairs of candidates, his most
preferred ranking is the one that matches his judgment. However, several
preference functions are admissible for the expert, even in this case.

EXAMPLE 2 Suppose that C = {a, b, c}. Suppose that the mechanism de-
signer knows that expert i is impartial with respect to all pairs of candidates,
i.e., Ii = {ab, ac, bc}. Let ρi = abc. Every admissible preference function
for i is such that (1) abc Pi(ρi) bac and cab Pi(ρi) cba (because ab ∈ Ii and
ρi(a) < ρi(b)), (2) acb Pi(ρi) cab and bac Pi(ρi) bca (because ac ∈ Ii and
and ρi(a) < ρi(c)), and (3) abc Pi(ρi) acb and bca Pi(ρi) cba (because bc ∈ Ii
and ρi(b) < ρi(c)). In Table 2 we show the six strict preference relations that
satisfy the previous requirements.2 A similar argument applies to the other
five possible judgments of expert i.

Ri(abc)
abc abc abc abc abc abc
acb acb acb bac bac bac
cab bac bac bca acb acb
bac cab bca acb bca cab
bca bca cab cab cab bca
cba cba cba cba cba cba

Table 2 Admissible strict preference relations for expert i Example 2.

Let R(Ii, Fi) be the class of all preference functions that are admissible
for i at (Ii, Fi). A jury configuration is a list (I, F ) = ((I1, F1), ..., (In, Fn))
and it represents the information the mechanism designer has about the
experts. Given a jury configuration (I, F ) and a pair of candidates xy, let
EI
xy = {i ∈ E | xy ∈ Ii} be the set of experts who are impartial with respect
to xy and let EF

xy = {i ∈ E | xy ∈ Fi} be the set of experts who favor x over
y.
A mechanism is a pair Γ = (M, g), where M ≡ ×i∈EMi, Mi is a message

space for expert i, and g : M → Π is an outcome function. Given a jury
configuration (I, F ), a state is a profile (ρ,R), where ρ = (ρi)i∈E is the profile
of experts’judgments and R = (Ri)i∈E is the profile of experts’preference

2Note that, since indifference in preferences is allowed, the number of preference rela-
tions that satisfy the requirements is higher (for example, bac could be indifferent to acb,
or bca could be indifferent to cab).
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functions. Given a jury configuration (I, F ), let S(I, F ) = Πn × R(I, F )
be the set of admissible states, where R(I, F ) = ×i∈ER(Ii, Fi). Given a
game-theoretic equilibrium concept E , a mechanism Γ, and a state (ρ,R), let
E(Γ, ρ, R) ⊂M denote the set of E-equilibrium messages of Γ at (ρ,R). The
corresponding ranking of candidates is denoted g(E(Γ, ρ, R)).
Given a jury configuration (I, F ) and an equilibrium concept E , a mech-

anism Γ = (M, g) implements an SCF f in E-equilibrium, if, for each state
(ρ,R) ∈ S(I, F ), g(E(Γ, ρ, R)) = πfρ .

3 Dominant strategy implementation

Whether an SCF is implementable may depend on the jury configuration
and the invoked game-theoretic equilibrium concept. Regarding the latter,
the most demanding notion is that of dominant strategy equilibrium.
Given a mechanism Γ = (M, g),m ∈M is a dominant strategy equilibrium

of Γ at state (ρ,R) if, for every i ∈ E, m̂i ∈Mi, and m̂−i ∈M−i, g(mi, m̂−i)
Ri(ρi) g(m̂i, m̂−i).
Our first result identifies a necessary and suffi cient condition for an SCF to

be implementable in dominant strategies: If two candidates, x and y, change
their relative positions in the socially optimal ranking when the profile of
experts’judgments change from ρ to ρ̂, then there is at least one expert that
is impartial with respect to xy and such that, when moving from ρ to ρ̂, he
changes his judgment about the relative positions of x and y in the same way
as they change in the socially optimal ranking.

DEFINITION Given a jury configuration (I, F ), an SCF f satisfies unrespon-
siveness to partial experts (UPE) if, for each ρ, ρ̂ ∈ Πn and xy ∈ [C]2 such
that πfρ(x) < πfρ(y) and πfρ̂(y) < πfρ̂(x), there is some i ∈ E with xy ∈ Ii,
ρi(x) < ρi(y), and ρ̂i(y) < ρ̂i(x).

THEOREM 1 Given a jury configuration (I, F ), an SCF f is implementable
in dominant strategies if and only if it satisfies UPE.

To prove Theorem 1, we show that, when implementing in dominant
strategies, we can restrict our attention to a reduced version of the direct
mechanism where experts only need to announce their judgments (not their
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preferences).3 If the SCF does not satisfy UPE, announcing the true judg-
ments is not a dominant strategy equilibrium of the former mechanism and
the SCF is not implementable in dominant strategies. If the SCF satisfies
UPE, the reduced version of the direct mechanism implements the SCF in
dominant strategies (truth-telling is a dominant strategy equilibrium and any
other possible equilibrium yields the same ranking).
Whether an SCF satisfies UPE may depend on the specific jury configu-

ration. In this regard, the most favorable jury configuration is one in which
all experts are impartial with respect to all pairs of candidates (having ex-
perts who favor some candidates over others is of no help in fulfilling UPE).
Unfortunately, even in this case, most reasonable SCFs do not satisfy UPE
(and therefore they are not implementable in dominant strategies).
To see this point, we define two reasonable properties of SCFs. The first

requires the SCF to be such that, whenever all experts honestly believe that
x is better than y, x must go before y in the socially optimal ranking. The
second property requires that there be no dictator who always determines
the socially optimal ranking.

DEFINITIONAn SCF f satisfies unanimity if, for every x, y ∈ C and ρ ∈ Πn,
whenever ρi(x) < ρi(y) for every i ∈ E, then πfρ(x) < πfρ(y).

DEFINITION An SCF f is non-dictatorial if, for every i ∈ E there exist
some ρ ∈ Πn such that πfρ 6= ρi.

Our following result shows that if an SCF satisfies unanimity and non-
dictatorship, it is not implementable in dominant strategies, even in the
most favorable case where all experts are impartial with respect to all pairs
of candidates.

THEOREM 2 Suppose that m ≥ 3. If an SCF f satisfies unanimity and
non-dictatorship, it is not implementable in dominant strategies, regardless
of the jury configuration.

3The direct mechanism associated with a social choice rule is a mechanism where the
message space for each agent is his space of admissible types and the outcome function
is the social choice rule itself. In our model, an expert’s type would be defined by his
judgment and his preference relation over Π.
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Relation of Theorem 2 to Arrow’s impossibility Theorem
It turns out that if an SCF satisfies UPE, the relative position of any

two candidates in the socially optimal ranking depends only on the relative
positions of the two candidates in the experts’judgments. Let us call this
property independence of irrelevant candidates.
Let us now reinterpret each ranking of candidates π as a preference rela-

tion over C (so that π(x) < π(y) is interpreted as candidate x being preferred
to candidate y according to the preference relation π). In this case, an SCF
f : Πn → Π would be an Arrovian social welfare function aggregating individ-
uals’preference relations into a social preference relation. We can reinterpret
every property defined on an SCF into a property defined on a social welfare
function: (1) unanimity requires that, if everyone prefers any candidate x
to any candidate y, then x is socially preferred to y; (2) non-dictatorship
requires that there is no agent i such that whenever this agent prefers any
candidate x to any candidate y, then x is socially preferred to y, no matter
what others prefer; (3) independence of irrelevant candidates requires that
whenever a pair of candidates are ranked the same way in two preference
profiles, then the social preference relation must order these two candidates
identically across the two profiles.
Arrow’s impossibility Theorem (Arrow, 1951) states that no social welfare

function satisfies the three previous properties with at least three alternatives
(candidates) and unrestricted domain of preferences (judgments). Therefore,
Theorem 2 can be obtained as a corollary of Theorem 1 and Arrow’s impos-
sibility Theorem.

Relation of Theorem 2 to Gibbard-Satterthwaite Theorem
Theorem 2 bears a close resemblance to Gibbard-Satterthwaite (GS) The-

orem (Gibbard, 1973; Satterthwaite, 1975). However, as we explain below,
it is an independent result.
In the GS Theorem setting, a social choice function selects an outcome

based on a group of agents’preferences over the set of feasible outcomes. Let
us call it Gibbard-Satterthwaite social choice function (GS-SCF). A GS-SCF
is said to be unanimous if it selects the outcome that is top-ranked in the
preferences of everyone whenever that outcome exists. A GS-SCF is said to
be dictatorial if it always selects the top-ranked outcome of the same agent.
A GS-SCF is said to be strategy-proof if, in the direct mechanism, it is a
dominant strategy for each agent to report his preferences truthfully. The
GS Theorem states that if there are at least three outcomes and every strict
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preference relation over outcomes is admissible for each agent, then no GS-
SCF satisfies unanimity, non-dictatorship, and strategy-proofness. Because
strategy-proofness is necessary for implementation in dominant strategies, it
implies that no unanimous and non-dictatorial GS-SCF is implementable in
dominant strategies.
In our model, the agents are the experts, and the set of feasible out-

comes is the set of all possible rankings of candidates. Moreover, an SCF
does not select an outcome based on the experts’preferences over rankings
but based on their judgments. Nevertheless, given a jury configuration, the
experts’preferences are related to their judgments, and then an SCF can
be translated into a GS-SCF. Even so, Theorem 2 cannot be deduced from
GS Theorem. To see this, consider the following example. Let C = {a, b, c}
and that the jury configuration is such that all experts are impartial with
respect to all pairs of candidates. Then, the set of feasible outcomes is
Π = {abc, acb, bac, bca, cab, cba} and (I, F ) is such that Ii = {ab, ac, bc} for
every i ∈ E. Given any expert i ∈ E, let (ρi, Ri) ∈ Π×R(Ii, Fi) be such that
ρi = abc. In this case, as shown in Example 2, only the six strict preference
relations depicted in Table 2 are admissible for him. A similar argument ap-
plies to the other five possible judgments of expert i, which yields 36 different
strict preference relations. Hence, although there are 6! = 720 different strict
preference relations over the elements of Π, only 36 of them are admissible
for each expert. Because one of the requirements of the GS Theorem is that
every strict preference relation over outcomes is admissible for each agent,
this theorem has no bite here. However, Theorem 2 states that, even in this
case where all experts are impartial with respect to all pairs of candidates,
no SCF satisfying unanimity and non-dictatorship can be implemented in
dominant strategies.

4 Nash implementation

The message delivered by Theorem 2 is that implementation in dominant
strategies has minimal success when there are at least three candidates. In
this section, we relax the game-theoretic equilibrium concept and analyze
implementation in Nash equilibrium.
Given a mechanism Γ = (M, g), m ∈ M is a Nash equilibrium of Γ at

state (ρ,R) if, for every i ∈ E and m̂i ∈Mi, g(mi,m−i) Ri(ρi) g(m̂i,m−i).
We start by identifying the following necessary condition for an SCF to
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be implementable in Nash equilibrium: For the optimal ranking to change
when the experts change their judgments from ρ to ρ̂, there must be at
least one expert who changes his judgment about the relative position of
two candidates with respect to whom he is impartial, so that he goes from
agreeing with πfρ to not agreeing with π

f
ρ on this matter.

DEFINITION Given a jury configuration (I, F ), an SCF f satisfies weak
unresponsiveness to partial experts (WUPE) if, for every ρ, ρ̂ ∈ Πn with
πfρ 6= πfρ̂ , there exist i ∈ E and xy ∈ Ii such that πfρ(x) < πfρ(y), ρi(x) < ρi(y),
and ρ̂i(y) < ρ̂i(x).4

THEOREM 3 Given a jury configuration (I, F ), if an SCF f is imple-
mentable in Nash equilibrium then it satisfies WUPE.

The idea behind Theorem 3 is that, if f does not satisfy WUPE, then
there are two states, (ρ,R) and (ρ̂, R̂), for which the socially optimal ranking
is different, πfρ 6= πfρ̂ , and such that, when going from (ρ,R) to (ρ̂, R̂), the
desirability of πfρ does not deteriorate for any expert. Then, every Nash equi-
librium of a mechanism Γ at (ρ,R) resulting in πfρ is also a Nash equilibrium
of Γ at (ρ̂, R̂), which makes implementation in Nash equilibrium impossible.
Whether WUPE is suffi cient for Nash implementation depends on the

jury configuration. We present two results in this regard for the case of three
or more experts. Before presenting the first result, we introduce two new
concepts.

DEFINITION Given a jury configuration (I, F ), we say that x ∈ C is a
friend of i ∈ E if xy ∈ Fi for every y ∈ C\{x}.

DEFINITION Given a jury configuration (I, F ), we say that x ∈ C is an
enemy of i ∈ E if yx ∈ Fi for every y ∈ C\{x}.

Roughly speaking, candidate x is a friend of an expert if the expert favors
x over all other candidates. Similarly, a candidate x is an enemy of an expert
if the expert favors all other candidates over x. It turns out that if at least
three experts have different friends or at least three experts have different
enemies, then WUPE is suffi cient for Nash implementation.

4Note that UPE implies WUPE. The reason is that, if πfρ 6= πfρ̂ , then there exists a

pair xy such that πfρ(x) < πfρ(y) and πfρ̂(y) < πfρ̂(x). However, WUPE does not imply
UPE (we show examples in the next sections).
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THEOREM 4 Suppose that n ≥ 3 and that the jury configuration is such
that either (i) at least three experts have different friends or (ii) at least three
experts have different enemies. If an SCF f is onto and satisfies WUPE, it
is Nash implementable.

This result reveals that, unlike dominant strategies, having experts who
favor some candidates over others may facilitate Nash implementation. One
of the greatest diffi culties when implementing an SCF in Nash equilibrium
is ensuring that the mechanism does not have “bad” equilibria that result
in rankings other than the socially optimal. Having experts with friends or
enemies is of great help in eliminating these bad equilibria.
The proof of Theorem 4 is based on the construction of a mechanism that

Nash implements any SCF under the conditions assumed. Our mechanism is
similar to Maskin’s canonical mechanism for Nash implementation (Maskin,
1999). However, there is an essential difference between the two. Unlike
what happens with Maskin’s canonical mechanism, in our mechanism, each
expert does not have to announce the entire state (ρ,R) but only the profile
of judgments ρ. Therefore, each expert does not need to know the exact
preference relations over rankings of others.
Although having experts who favor some candidates over others can make

Nash implementation easier, it is not necessary. Our next result shows that
if all experts are impartial with respect to all pairs of candidates and the
SCF satisfies a “no veto”condition, then WUPE is suffi cient for Nash im-
plementation.

DEFINITION Suppose n ≥ 3. An SCF f satisfies no veto if, for every
ρ ∈ Πn, π ∈ Π, and j ∈ E, if ρi = π for every i 6= j then πfρ = π.

No veto requires that, if all experts but possibly one honestly believe that
π is the deserving ranking, then π is the socially optimal ranking.

THEOREM 5 Suppose that n ≥ 3 and that the jury configuration is such that
all experts are impartial with respect to all pairs of candidates. If an SCF f
satisfies WUPE and no veto, it is Nash implementable.

To prove Theorem 5, we use the same mechanism as in the proof of The-
orem 4. WUPE and no veto are related to monotonicity and no veto power,
two well-known suffi cient conditions for Nash implementation in general en-
vironments (Maskin, 1999). However, while the latter properties refer to how
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the chosen outcome changes with the agents’preferences, the former refer to
how the chosen ranking changes with the experts’judgments (not with their
preferences).

5 Voting rules as SCFs

This section studies the Nash implementability of the SCF version of some
well-known voting rules.5 Voting rules are processes for aggregating individ-
ual judgments to choose one winner from a pool of candidates. They can be
classified into two broad types.

Scoring voting rules: The voting rule assigns points to the candidates based
on how the voters rank them, and the winner is the candidate with the
highest total number of points.

Condorcet consistent voting rules: The voting rule chooses the winner based
on a series of majority comparisons between the candidates and is such that, if
a candidate beats every other candidate in these comparisons, he is selected.6

One can think of voting rules as collective choice rules that reflect society’s
objectives on what candidate should win.7 Given this interpretation, voting
rules can be extended to SCFs that rank candidates in two ways.

Extended voting rule SCF: The voting rule is applied once to the profile of
experts’judgments, and the candidates are ranked according to the points
they get.

Recursive voting rule SCF: The voting rule is applied to the profile of ex-
perts’judgments to find the winner candidate; this candidate gets the first
position in the ranking; then, we make a new profile of judgments without
the previous candidate and use it to find the winner; this candidate gets the

5All the SCFs analyzed in this section satisfy unanimity and non-dictatorship, and
then, by Theorem 2, they are not implementable in dominant strategies.

6The Condorcet winner is a candidate who beats each opponent in a pairwise compar-
ison. A voting rule is Condorcet consistent if it selects the Condorcet winner whenever it
exists.

7Under the implicit assumption that individuals behave truthfully, voting rules are
often used as mechanisms (if individuals had no incentive to misreport their judgments,
the mechanism implementing the optimal outcome prescribed by the voting rule could be
the voting rule itself).
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second position in the ranking; we repeat this process until all candidates
have been ranked.

Some additional notation will be useful for our analysis. For each ρ ∈ Πn

and Ĉ ⊆ C let ρĈ denote the restriction of ρ to Ĉ, i.e., for each i ∈ E, ρĈi is
a ranking of the candidates in Ĉ where, for each x, y ∈ Ĉ, ρĈi (x) < ρĈi (y) if
and only if ρi(x) < ρi(y). For each voting rule, there is a family of extended
and recursive voting rule SCFs that differ only in the way they break ties. A
tie-breaking rule is a function t : 2C → C that, given a set of candidates in
C, chooses one of them.

5.1 Scoring voting rules as SCFs

Plurality, instant-runoff, and Borda rules are three representative scoring
voting rules.

Plurality: A candidate gets one vote for every voter who ranks him first, and
the winner is the candidate with the most votes.

Instant-runoff: A candidate gets one vote for every voter who ranks him first.
If a candidate gets a majority, he wins. Otherwise, the candidate with the
fewest votes is eliminated, and any votes for that candidate are redistributed
to the voters’next choice. This process continues until one candidate has a
majority.

Borda: A candidate gets m points for every voter who ranks him first, m−1
points for a second-place vote, and so on. The Borda score for a candidate
is the sum of the points that he gets from all voters. The winner is the
candidate with the highest Borda score.

Unfortunately, the extended and recursive SCF versions of these scoring
voting rules fail to be Nash implementable when m ≥ 3, regardless of the
tie-breaking rule and the jury configuration.

PROPOSITION 1 If m ≥ 3, the extended and recursive SCF versions of
the plurality, instant-runoff, and Borda voting rules fail to be Nash imple-
mentable, regardless of the tie-breaking rule and the jury configuration.

To prove Proposition 1, we propose examples in which WUPE, the nec-
essary condition for Nash implementation, is not satisfied. The examples do
not depend on the tie-breaking rule or the jury configuration.

16



5.2 Condorcet consistent rules as SCFs

Copeland and minimax rules are two characteristic Condorcet consistent vot-
ing rules.

Copeland: Each pair of candidates is compared to determine which of the
two is considered better by a majority. That candidate is awarded 1 point.
Each candidate is awarded 1

2
point if there is a tie. The Copeland score for

a candidate is the sum of the points that he gets in its pairwise comparisons
with all other candidates. The winner is the candidate with the most points.

Minimax: Each candidate is pairwise compared with each other to determine
which of the two is considered better by a majority. The winner is the
candidate whose largest pairwise defeat is smaller than the largest pairwise
defeat of any other candidate. The strength of a pairwise defeat is measured
as the number of experts that honestly believe that the winning candidate is
better minus the number of candidates that honestly believe that the losing
candidate is better.

Similar to what happens with scoring voting rules, the extended SCF ver-
sions of these Condorcet consistent voting rules fail to be Nash implementable
when m ≥ 3, regardless of the tie-breaking rule and the jury configuration.
The same negative result holds for the recursive SCF versions of these voting
rules but, in this case, only when m ≥ 4.

PROPOSITION 2
(1) If m ≥ 3, the extended SCF versions of the Copeland and minimax

voting rules fail to be Nash implementable, regardless of the tie-breaking rule
and the jury configuration.
(2) If m ≥ 4, the recursive SCF versions of the Copeland and minimax

voting rules fail to be Nash implementable, regardless of the tie-breaking rule
and the jury configuration.

There is a notable exception to the previous negative results. Ifm = 3, the
recursive SCF versions of the Copeland and minimax voting rules are Nash
implementable for particular tie-breaking rules and jury configurations. Let
us define two families of tie-breaking rules that are of interest in this case.

DEFINITIONA tie-breaking rule t satisfies non-favoritism if, for every x ∈ C
there exists some y ∈ C such that, if Ĉ = {x, y}, then t(Ĉ) = y.
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DEFINITION A tie-breaking rule t is linear-ordered if, for every Ĉ, C̄ ⊆ C
and every x, y ∈ Ĉ, C̄, if t(Ĉ) = x, then t(C̄) 6= y.

Roughly speaking, t satisfies non-favoritism if there is no candidate x in
favor of whom t breaks every 2-candidates tie in which x is involved. Linear-
ordered tie-breaking rules are tie-breaking rules that decide upon a winner
based on some linear order over candidates.
The following theorem state two positive results on the Nash imple-

mentability of the recursive SCF versions of Condorcet consistent rules when
m = 3, n ≥ 3, and all experts are impartial with respect to all pairs of candi-
dates. Under these conditions, every recursive SCF version of the Copeland
rule with a tie-breaking rule that satisfies non-favoritism and every recursive
SCF version of the minimax rule with a linear-ordered tie-breaking rule are
Nash implementable.

THEOREM 6 Suppose that m = 3, n ≥ 3, and the jury configuration is such
that all experts are impartial with respect to all pairs of candidates.
(1) If f is a recursive SCF version of the Copeland voting rule with a

tie-breaking rule that satisfies non-favoritism, it is Nash implementable.
(2) If f is a recursive SCF version of the minimax voting rule with a

linear-ordered tie-breaking rule, it is Nash implementable.

To prove Theorems 6 we show that, under the conditions stated there,
the SCFs satisfy WUPE and no veto, the suffi cient conditions for Nash im-
plementation stated in Theorem 4.

Remark 1 A recursive SCF version of the Copeland voting rule fail to be Nash
implementable if its tie-breaking rule does not satisfy non-favoritism, even if
m = 3, n ≥ 3, and EI

xy = E for every xy ∈ [C]2. The same is true for a
recursive SCF version of the minimax voting rule if its tie-breaking rule is
not linear-ordered. (See Appendix).

Remark 2 The fact that a recursive SCF version of a Condorcet consistent
voting rule is Nash implementable does not imply that it can be implemented
through the direct mechanism associated with it. The reason is that, in this
mechanism, every ranking can be obtained as a Nash equilibrium result in
every state. Then, in order to implement the SCF, we should use a mecha-
nism other than the recursive version of the voting rule itself.
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6 Serial pairwise comparison SCF

Of all the SCFs analyzed in the previous section, only the recursive versions of
the Condorcet consistent voting rules satisfy WUPE, the necessary condition
for Nash implementation, and this only when m = 3. This section proposes
a non-trivial SCF that satisfies WUPE for every m ≥ 2, regardless of the
jury configuration.

DEFINITION Let π∗ ∈ Π be an arbitrary ranking of candidates, interpreted
as the status quo. For each k ∈ {1, ...,m}, let x∗k ∈ C be the k-th candidate
in π∗, i.e., π∗(x∗k) = k. The serial pairwise comparison SCF, f ∗, is such
that, for each profile of judgments ρ ∈ Πn, the socially optimal ranking πf

∗
ρ

is defined by the following rules:
Rule 1. x∗1 is pairwise compared with every other candidate y ∈ C\{x∗1} to
determine which of the two candidates is considered better by a majority
among the experts who are impartial with respect to them. If at least half
of the experts in EI

x∗1y
honestly believe that x∗1 is better than y, then x

∗
1 is

ranked before y. Otherwise, y is ranked before x∗1.
8

Rule k (for each k ∈ {2, ...,m}). x∗k is pairwise compared with every other
candidate y ∈ C\{x∗1, ..., x∗k} whose relative ranking with respect to y has not
been set by any previous Rule l (with l < k). If at least half of the experts
who are impartial with respect to x∗ky honestly believe that x

∗
k is better than

y, then x∗k is ranked before y. Otherwise, y is ranked before x
∗
k.

EXAMPLE 3 Suppose that C = {a, b, c, d} and E = {1, 2, 3, 4}. Then
[C]2 = {ab, ac, ad, bc, bd, cd}. Let (I, F ) be a jury configuration such that
I1 = {bc, bd, cd}, I2 = {ac, ad, cd}, I3 = {ab, ad, bd}, and I4 = {ab, ac, bc}.9
Suppose that the arbitrary ranking used by f ∗ is π∗ = abcd. Consider the pro-
file of judgments ρ depicted in Table 3. Let us calculate the ranking selected
by f ∗ at ρ.

8In particular, if no expert is impartial with respect to the pair x∗1y, then x
∗
1 is ranked

before y.
9This could be the case when the experts are the candidates themselves. Suppose that

expert 1 is candidate a, expert 2 is candidate b, expert 3 is candidate c, and expert 4
is candidate d. Each expert is impartial with respect to every pair of candidates that
do not include him. Although not relevant to this example, in this case it would be
reasonable for each expert to be a friend of himself, i.e., F1 = {ab, ac, ad}, F2 = {ba, bc, bd},
F3 = {ca, cb, cd}, and F4 = {da, db, dc}.
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Rule 1. The first candidate in π∗, a, is pairwise compared with the other
three candidates. In each of these comparisons, we only consider the judg-
ments of those experts who are impartial with respect to the given pair. Be-
cause EI

ab = {3, 4}, ρ3(a) < ρ3(b) and ρ4(a) < ρ4(b) (at least half of the
experts in EI

ab honestly believe that a is better than b), then π
f∗
ρ (a) < πf

∗
ρ (b).

Because EI
ac = {2, 4}, ρ2(c) < ρ2(a) and ρ4(a) < ρ4(c) (at least half of the ex-

perts in EI
ac honestly believe that a is better than c), then π

f∗
ρ (a) < πf

∗
ρ (c).10

Finally, because EI
ad = {2, 3}, ρ2(d) < ρ2(a) and ρ3(d) < ρ3(a) (more than

half of the experts in EI
ad honestly believe that d is better than a), then

πf
∗
ρ (d) < πf

∗
ρ (a).

Rule 2. The second candidate in π∗ is b. Note that c is the only candidate
whose relative ranking with respect to b has not been set by Rule 1 (from Rule
1 we have πf

∗
ρ (d) < πf

∗
ρ (a) < πf

∗
ρ (b)). Then, b is pairwise compared with c for

those experts who are impartial with respect to them. Because EI
bc = {1, 4},

ρ1(b) < ρ1(c) and ρ4(b) < ρ4(c) (at least half of the experts in EI
bc honestly

believe that b is better than c), then πf
∗
ρ (b) < πf

∗
ρ (c).

From Rules 1 and 2, we have πf
∗
ρ = dabc. Note that all the experts who

are impartial between c and d honestly believe that c is better than d (EI
cd =

{1, 2}, ρ1(c) < ρ1(d) and ρ2(c) < ρ2(d)). However, we do not consider this
information since the relative ranking between c and d is determined by the
pairwise comparisons of a with c and d in Rule 1. Something similar happens
with the pairwise comparison between b and d.

ρ
ρ1 ρ2 ρ3 ρ4
b c d a
c d a b
a b c d
d a b c

Table 3 Profile of judgments in Example 3.

The serial pairwise comparison SCF satisfies WUPE, the necessary con-
dition for Nash implementation, regardless of the jury configuration.11

10In this case, there is a tie that breaks in favor of a because π∗(a) < π∗(c).
11If the jury configuration satisfies the mild requirement that, for every pair of candi-

dates, there is at least one expert who is impartial with respect to them, the serial pairwise
comparison SCF satisfies unanimity and non-dictatorship. Hence, from Theorem 2, it is
not implementable in dominant strategies.
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PROPOSITION 3 The serial pairwise comparison SCF f ∗ satisfies WUPE,
regardless of the jury configuration.

As discussed in Section 3, whether WUPE is suffi cient for Nash imple-
mentation depends on the jury configuration. In this regard, we have the
following two corollaries.

COROLLARY 1 Suppose that n ≥ 3. Suppose that the jury configuration
is such that (1) for each pair of candidates, there is at least one expert who
is impartial with respect to them, and either (2.1) at least three experts have
different friends or (2.2) at least three experts have different enemies. Then,
the serial pairwise comparison SCF f ∗ is Nash implementable.

COROLLARY 2 Suppose that n ≥ 3. Suppose that the jury configuration
is such that all experts are impartial with respect to all pairs of candidates.
Then, the serial pairwise comparison SCF f ∗ is Nash implementable.

Corollary 1 follows from Proposition 3, Theorem 4, and the fact that, if
for every pair of candidates there is at least one expert who is impartial with
respect to them, the serial pairwise comparison SCF f ∗ is onto. Corollary
2 follows from Proposition 3, Theorem 5, and the fact that, if n ≥ 3 and
all experts are impartial with respect to all pairs of candidates, the serial
pairwise comparison SCF f ∗ satisfies no veto.12

7 Concluding remarks

We have studied the problem of implementing the socially optimal ranking
that arises when a group of experts have to rank a set of candidates but
may want to misreport their judgments. We have reached the following
conclusions.
1. Implementation in dominant strategies is possible if and only if, when-

ever two candidates change their relative positions in the socially optimal
ranking, there is at least one expert who is impartial with respect to them
and changes his judgment about their relative positions in the same way

12A similar comment to that in Remark 1 may be made here, noting that the fact that
f∗ is Nash implementable does not imply that it can be implemented through the direct
mechanism associated with it. The reason is that, in this mechanism, there may be Nash
equilibria where all experts announce the same ranking regardless of their judgments.
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that the socially optimal ranking does. Unfortunately, this condition is not
satisfied in most reasonable cases.
2. Implementation in Nash equilibrium is possible only if, whenever the

socially optimal ranking changes, there is at least one expert who changes
his judgment about the relative position of two candidates with respect to
whom he is impartial so that he goes from agreeing with the socially optimal
ranking to not agreeing with it on this matter. If a suffi ciently large number
of experts want to favor some candidates over others, the previous condition
is suffi cient for Nash implementation. The condition is also (almost) suffi cient
if all experts are impartial with respect to all candidates.
3. Voting rules used in the real world to rank candidates are not imple-

mentable, with one notable exception: The recursive versions of Condorcet
consistent voting rules are Nash implementable when there are precisely three
candidates, all experts are impartial with respect to all pairs of candidates,
and the tie-breaking rules satisfy specific properties.
4. We have proposed a new and non-trivial rule to aggregate the ex-

perts’ judgments that is implementable in Nash equilibrium, regardless of
the number of candidates.

Here are some suggestions for promising lines of extensions.
a. In some problems, the mechanism designer knows that the judgments

of different experts cannot be too different. For example, two experts could
honestly disagree about whether x is the best or the second-best candidate,
but it is not possible that an expert honestly believes that x is the best
candidate while another expert honestly believes that x is the worst candi-
date. Having this information reduces the set of admissible states, therefore
facilitating the implementation of the SCF. It would be interesting to try to
extend our work to this case.
b. The use of extensive form mechanisms generally facilitates the im-

plementation problem.13 For example, the general conditions for subgame
perfect implementation are less demanding than the general conditions for
Nash implementation (see Moore and Repullo, 1988). It would be interesting
to study what results can be obtained when using these mechanisms.

13An “extensive form mechanism”is a stage mechanism in which experts make choices
sequentially.
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Appendix

PROOF OF THEOREM 1
The proof of this theorem is preceded by one lemma. It shows that to guar-
antee that an expert i prefers a ranking π to another ranking π̂ when his
judgment is ρi, it must be the case that, for every pair of candidates xy who
change their relative positions when moving from π to π̂, either (i) i is im-
partial with respect to xy and they are ranked among them according to ρi
in π, or (ii) i favors x over y.

LEMMA 1 Let i ∈ E and ρi, π, π̂ ∈ Π. Given a jury configuration (I, F ),
then [π Ri(ρi) π̂ for every Ri ∈ R(Ii, Fi)] ⇔ [for every xy ∈ [C]2 such that
π(x) < π(y) and π̂(y) < π̂(x), we have either (i) xy ∈ Ii and ρi(x) < ρi(y),
or (ii) xy ∈ Fi]. Moreover, in this case, π Pi(ρi) π̂ for every Ri ∈ R(Ii, Fi).

Proof We start the proof showing that π Ri(ρi) π̂ for every Ri ∈ R(Ii, Fi) if
and only if there is a sequence of rankings π1, ..., πs such that: (1) π1 = π, (2)
πs = π̂, and (3) for each q ∈ {1, ..., s− 1} there is xy ∈ [C]2 such that (3.1)
πq(x) + 1 = πq(y) = πq+1(x) = πq+1(y) + 1, (3.2) πq(z) = πq+1(z) for each
z ∈ C\{x, y}, and either (3.3.1) xy ∈ Ii and ρi(x) < ρi(y), or (3.3.2) xy ∈ Fi.
First, note that if there is not such a sequence of rankings then, from the
definition of admissible preference function, there exists Ri ∈ R(Ii, Fi) such
that and π̂ Pi(ρi) π. To prove the suffi cient part, suppose that a sequence of
rankings as defined above exists. From the definition of admissible preference
function, every Ri ∈ R(Ii, Fi) is such that, for each q ∈ {1, ..., s−1}, πq Pi(ρi)
πq+1, and therefore π = π1 Pi(ρi) π

2 Pi(ρi) ... π
s−1 Pi(ρi) π

s = π̂. To conclude
the proof, note that a sequence of rankings as defined above exists if and only
if, for every xy ∈ [C]2 such that π(x) < π(y) and π̂(y) < π̂(x), we have either
(i) xy ∈ Ii and ρi(x) < ρi(y) or (ii) xy ∈ Fi.

Now, we can prove the theorem. Let D(Γ, ρ, R) be the set of dominant
strategy equilibrium messages of Γ at (ρ,R).

Step 1. If f is implementable in dominant strategies, then, for every
i ∈ E, ρi, ρ̂i ∈ Π, ρ−i ∈ Πn−1, and Ri ∈ R(Ii, Fi), we have π

f
(ρi,ρ−i)

Ri(ρi)

πf(ρ̂i,ρ−i).

Let Γ = (M, g) be a mechanism implementing f in dominant strate-
gies. For each state (ρ,R) ∈ S(I, F ), let m∗(R(ρ)) = (m∗1(R1(ρ1)), ...,
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m∗n(Rn(ρn)) ∈ D(Γ, ρ, R) (note that a dominant strategy for an expert i
depends only on his ordinal preferences Ri(ρi)). Suppose by contradiction
that there are i ∈ E, ρi, ρ̂i ∈ Π, ρ−i ∈ Πn−1, and Ri ∈ R(Ii, Fi) such
that πf(ρ̂i,ρ−i) Pi(ρi) π

f
(ρi,ρ−i)

. Let R̂i ∈ R(Ii, Fi) and R−i ∈ R(I−i, F−i). Let

ρ = (ρi, ρ−i), ρ̂ = (ρ̂i, ρ−i), R = (Ri, R−i), and R̂ = (R̂i, R−i). Because
Γ implements f in dominant strategy equilibrium, there exists m∗(R(ρ)) =
(m∗i (Ri(ρi)), m

∗
−i(R−i(ρ−i))) ∈ D(Γ, ρ, R) such that g(m∗(R(ρ))) = πfρ . Simi-

larly, there exists m∗(R̂(ρ̂)) = (m∗i (R̂i(ρ̂i)),m
∗
−i(R−i(ρ−i))) ∈ D(Γ, ρ̂, R̂) such

that g(m∗(R̂(ρ̂))) = πfρ̂ . Because π
f
(ρ̂i,ρ−i)

Pi(ρi) π
f
(ρi,ρ−i)

, then g(m∗i (R̂i(ρ̂i)),

m∗−i(R−i(ρ−i))) Pi(ρi) g(m∗i (Ri(ρi)),m
∗
−i(R−i(ρ−i))), which contradicts that

m∗i (Ri(ρi)) is a dominant strategy for expert i at state (ρ,R).

Step 2. f is implementable in dominant strategies if and only if, for
each i ∈ E, ρi, ρ̂i ∈ Π, ρ−i ∈ Πn−1, and xy ∈ [C]2 such that πf(ρi,ρ−i)(x) <

πf(ρi,ρ−i)(y) and πf(ρ̂i,ρ−i)(y) < πf(ρ̂i,ρ−i)(x), we have ρi(x) < ρi(y), ρ̂i(y) <

ρ̂i(x), and xy ∈ Ii.
First, we prove the necessity part. Let i ∈ E, ρi, ρ̂i ∈ Π, and ρ−i ∈ Πn−1.

If f is implementable in dominant strategies, by Step 1 we have (1) πf(ρi,ρ−i)
Ri(ρi) π

f
(ρ̂i,ρ−i)

for every Ri ∈ R(Ii, Fi) and (2) π
f
(ρ̂i,ρ−i)

Ri(ρ̂i) π
f
(ρi,ρ−i)

for

every Ri ∈ R(Ii, Fi). By (1), from Lemma 1, for every xy ∈ [C]2 such that
πf(ρi,ρ−i)(x) < πf(ρi,ρ−i)(y) and πf(ρ̂i,ρ−i)(y) < πf(ρ̂i,ρ−i)(x), we have either (1.1)
xy ∈ Ii and ρi(x) < ρi(y) or (1.2) xy ∈ Fi. Similarly, by (2), for every
xy ∈ [C]2 such that πf(ρ̂i,ρ−i)(y) < πf(ρ̂i,ρ−i)(x) and πf(ρi,ρ−i)(x) < πf(ρi,ρ−i)(y),
we have either (2.1) xy ∈ Ii and ρ̂i(y) < ρ̂i(x) or (2.2) yx ∈ Fi. Clearly, if
xy ∈ Fi then yx /∈ Fi. Therefore, for every xy ∈ [C]2 such that πf(ρi,ρ−i)(x) <

πf(ρi,ρ−i)(y) and πf(ρ̂i,ρ−i)(y) < πf(ρ̂i,ρ−i)(x), we have xy ∈ Ii, ρi(x) < ρi(y), and
ρ̂i(y) < ρ̂i(x).
Now we prove the suffi cient part. Suppose that, for each i ∈ E, ρi, ρ̂i ∈

Π, ρ−i ∈ Πn−1, and xy ∈ [C]2 such that πf(ρi,ρ−i)(x) < πf(ρi,ρ−i)(y) and

πf(ρ̂i,ρ−i)(y) < πf(ρ̂i,ρ−i)(x), we have xy ∈ Ii and ρi(x) < ρi(y). By Lemma

1, πf(ρi,ρ−i) Pi(ρi) π
f
(ρ̂i,ρ−i)

for every Ri ∈ R(Ii, Fi). Therefore, for every i ∈ E,
ρi, ρ̂i ∈ Π, ρ−i ∈ Πn−1, and Ri ∈ R(Ii, Fi) such that π

f
(ρi,ρ−i)

6= πf(ρ̂i,ρ−i) we

have πf(ρi,ρ−i) Pi(ρi) π
f
(ρ̂i,ρ−i)

. Then, the direct mechanism associated with
f implements it in dominant strategies. To see this, note that, for every
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(ρ,R) ∈ S(I, F ) and i ∈ E, either (1) πf(ρi,ρ̂−i) 6= πf(ρ̂i,ρ̂−i) for some ρ̂i ∈ Π

and ρ̂−i ∈ Πn−1, and then ρi is the only weakly dominant strategy for ex-
pert i, or (2) πf(ρi,ρ̂−i) = πf(ρ̂i,ρ̂−i) for every ρ̂i ∈ Π and ρ̂−i ∈ Πn−1, and
then every ρ̂i ∈ Π is a weakly dominant strategy for expert i. There-
fore, for every (ρ,R) ∈ S(I, F ), there is a dominant strategy equilibrium
ρ∗ ∈ Πn such that, for each i ∈ E, either (i) ρ∗i = ρi, or (ii) ρ

∗
i 6= ρi

and πf(ρi,ρ̂−i) = πf(ρ∗i ,ρ̂−i)
for every ρ̂−i ∈ Πn−1. Suppose ρ∗ 6= ρ. By (ii),

πf(ρ∗1,ρ∗2,...,ρ∗n)
= πf(ρ1,ρ∗2,...,ρ∗n)

= πf(ρ1,ρ2,...,ρ∗n) = ... = πf(ρ1,ρ2,...,ρn). Hence, every
dominant strategy equilibrium of the direct mechanism associated with f at
state (ρ,R) results in πfρ .

Step 3. f is implementable in dominant strategies if and only if it satisfies
UPE.

Clearly, UPE implies the necessary and suffi cient condition for dominant
strategy implementation stated in Step 2. Next, we prove the necessity part.
Suppose by contradiction that there exist ρ, ρ̂ ∈ Πn and xy ∈ [C]2 such that
πfρ(x) < πfρ(y), πfρ̂(y) < πfρ̂(x), and, for every i ∈ E with ρi(x) < ρi(y)
and ρ̂i(y) < ρ̂i(x), we have xy /∈ Ii. Let us assign a number to each expert
so that E = {1, ..., n}. Let ρ0, ρ1, ..., ρn ∈ Π be a sequence of profiles of
experts’ judgments that goes from ρ to ρ̂ where, for each q ∈ {0, 1, ..., n},
ρq is such that (i) ρqi = ρi for every i > q and (ii) ρqi = ρ̂i for every i ≤ q.
Note that ρ0 = ρ = (ρ1, ρ−1) and ρ

1 = (ρ̂1, ρ−1). Moreover, π
f
(ρ1,ρ−1)

(x) <

πf(ρ1,ρ−1)(y) and, in case ρ1(x) < ρ1(y) and ρ̂1(y) < ρ̂1(x), then xy /∈ Ii. Hence,
because f is implementable in dominant strategies, by Step 2, πfρ1(x) <

πfρ1(y). Similarly, ρ1 = (ρ2, ρ
1
−2) and ρ

2 = (ρ̂2, ρ
1
−2). Moreover, π

f
ρ1(x) <

πfρ1(y) and, in case ρ2(x) < ρ2(y) and ρ̂2(y) < ρ̂2(x), then xy /∈ I2. Hence,
because f is implementable in dominant strategies, by Step 2, πfρ2(x) <

πfρ2(y). Repeating this argument, we have πfρn(x) < πfρn(y). Because ρn = ρ̂,

this contradicts that πfρ̂(y) < πfρ̂(x).

PROOF OF THEOREM 2
We say that f satisfies independence of irrelevant candidates if for each
ρ, ρ̂ ∈ Πn and x, y ∈ C, [ρi(x) < ρi(y)⇔ ρ̂i(x) < ρ̂i(y)] for every i ∈ E

implies that
[
πfρ(x) < πfρ(y)⇔ πfρ̂(x) < πfρ̂(y)

]
(i.e., the relative position of
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two candidates in the socially optimal ranking depends only on the relative
positions of the two candidates in the experts’judgments).

Claim 1. If an SCF f is implementable in dominant strategies, it satisfies
independence of irrelevant candidates.

Suppose by contradiction that there exist ρ, ρ̂ ∈ Πn and x, y ∈ C such
that, (1) for every i ∈ E, ρi(x) < ρi(y) if and only if ρ̂i(x) < ρ̂i(y), but (2)
πfρ(x) < πfρ(y) and πfρ̂(y) < πfρ̂(x). Because f is implementable in dominant
strategies, by Theorem 1, it satisfies UPE. Then, by (2), there exists some
i ∈ E with xy ∈ Ii, ρi(x) < ρi(y), and ρ̂i(y) < ρ̂i(x), which contradicts (1).

Claim 2. If m ≥ 3 and the SCF f satisfies unanimity and non-dictatorship,
it is not implementable in dominant strategies.

A well-known result in voting theory is Arrow’s impossibility Theorem
(Arrow, 1951). In terms of our model, this theorem states that no SCF satis-
fies unanimity, non-dictatorship, and independence of irrelevant alternatives
with at least three candidates and unrestricted expert judgments. Hence, by
Step 1, no SCF satisfying unanimity and non-dictatorship is implementable
in dominant strategies if m ≥ 3.

PROOF OF THEOREM 3
Let N(Γ, ρ, R) be the set of Nash equilibrium messages of Γ at (ρ,R).

Claim 1. Let i ∈ E and ρi, ρ̂i, π ∈ Π be such that, for every xy ∈ Ii
with π(x) < π(y) and ρi(x) < ρi(y), we have ρ̂i(x) < ρ̂i(y). Then there
exist Ri, R̂i ∈ R(Ii, Fi) such that for every π̂ ∈ Π with π Ri(ρi) π̂ we have
π R̂i(ρ̂i) π̂.

It follows from the definition of R(Ii, Fi).

Claim 2. For every ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ and every R, R̂ ∈ R(I, F ),

there exist i ∈ E and π ∈ Π such that πfρ Ri(ρi) π and π P̂i(ρ̂i) π
f
ρ .

Let Γ = (M, g) be a mechanism implementing f in Nash equilibrium.
Suppose by contradiction that there exist ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ and R, R̂ ∈
R(I, F ) such that, for every i ∈ E and π ∈ Π, if πfρ Ri(ρi) π then πfρ
R̂i(ρ̂i) π. Because Γ implements f in Nash equilibrium, there exists m ∈
N(Γ, ρ, R) such that g(m) = πfρ . Then, for every i ∈ E and every m̂i ∈ Mi,
πfρ = g(mi,m−i) Ri(ρi) g(m̂i,m−i). Hence, for every i ∈ E and every m̂i ∈
Mi, πfρ = g(mi,m−i) R̂i(ρ̂i) g(m̂i,m−i). Therefore, m ∈ N(Γ, ρ̂, R̂), which
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contradicts that Γ implements f in Nash equilibrium because g(m) = πfρ 6=
πfρ̂ .

Claim 3. For every ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ , there exist i ∈ E and xy ∈ Ii
such that πfρ(x) < πfρ(y), ρi(x) < ρi(y), and ρ̂i(y) < ρ̂i(x).

Suppose on the contrary that there exist ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ such
that, for every i ∈ E and every xy ∈ Ii such that πfρ(x) < πfρ(y) and
ρi(x) < ρi(y), we have ρ̂i(x) < ρ̂i(y). Then, by Claim 1, for every i ∈ E
there exist Ri, R̂i ∈ R(Ii, Fi) such that for every π ∈ Π with πfρ Ri(ρi) π we
have πfρ R̂i(ρ̂i) π. Let R = (Ri)i∈E and R̂ = (R̂i)i∈E. Then, (ρ,R) and (ρ̂, R̂)

are such that πfρ 6= πfρ̂ and, for every i ∈ E and every π ∈ Π such that πfρ
Ri(ρi) π, we have π

f
ρ R̂i(ρ̂i) π, which contradicts Claim 2.

PROOF OF THEOREM 4
Claim 1. For every i ∈ E, ρi ∈ Π, Ri ∈ R(Ii, Fi), and π ∈ Π\{ρi}, we

have ρi Pi(ρi) π.

If π 6= ρi, there is a sequence of rankings π
1, ..., πs such that (1) π1 = ρi,

(2) πs = π, and (3) for each q ∈ {1, ..., s − 1} there is xy ∈ [C]2 such that
(3.1) πq(x) + 1 = πq(y) = πq+1(x) = πq+1(y) + 1, (3.2) ρi(x) < ρi(y), and
(3.3) πq(z) = πq+1(z) for every z ∈ C\{x, y}. Because EI

xy = E for every
xy ∈ [C]2, every Ri ∈ R(Ii, Fi) is such that, for each q ∈ {1, ..., s − 1}, πq
Pi(ρi) π

q+1, and therefore ρi = π1 Pi(ρi) π
2 Pi(ρi) ... π

s−1 Pi(ρi) π
s = π.

Claim 2. f is Nash implementable.

The proof is constructive. Consider the following mechanism Γ = (M, g),
where expert i’s message set is Mi = Πn ×N+, with typical message mi =
(ρi, λi) ∈Mi (i.e., each expert announces a profile of judgments and a positive
integer). The outcome function g is as follows:
Rule 1. If mi = (ρ, 1) for all i ∈ E, then g(m) = πfρ ..
Rule 2. If there exists j ∈ E such that mi = (ρ, 1) for every i 6= j but

mj = (ρj, λj) 6= (ρ, 1), then:

g(m) =


πf
ρj
; if, for every xy ∈ [C]2 such that πfρ(x) < πfρ(y)

and πf
ρj

(y) < πf
ρj

(x), we have either (i) xy ∈ Ij
and ρj(x) < ρj(y) or (ii) xy ∈ Fj

πfρ ; otherwise.
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Rule 3. In all other cases, g(m) = πf
ρj
where j is the first expert in

alphabetical order among those who announce the highest integer.
We now show that mechanism Γ implements f in Nash equilibrium.

Step 1. For each (ρ,R) ∈ S(I, F ), there is m ∈ N(Γ, ρ, R) with g(m) =
πfρ .

Let mi = (ρ, 1) for every i ∈ E. Then g(m) = πfρ . By Rule 2 and Lemma
1, for each i ∈ E and m̂i ∈ Mi such that g(m̂i,m−i) 6= πfρ we have π

f
ρ Pi(ρi)

g(m̂i,m−i). Therefore, m ∈ N(Γ, ρ, R).

Step 2. For each (ρ,R) ∈ S(I, F ), if m ∈ M is such that g(m) 6= πfρ
then m /∈ N(Γ, ρ, R).

Suppose on the contrary that g(m) = πfρ̂ for some ρ̂ ∈ Πn with πfρ̂ 6= πfρ
but m ∈ N(Γ, ρ, R).

Case 2.1 Rule 1 applies to m.

Then, mi = (ρ̂, 1) for every i ∈ E. Because πfρ̂ 6= πfρ , by WUPE, there
exist i ∈ E and xy ∈ Ii such that πfρ̂(x) < πfρ̂(y), ρ̂i(x) < ρ̂i(y), and ρi(y) <

ρi(x). Let π̃ ∈ Π be such that π̃(x) = πfρ̂(y), π̃(y) = πfρ̂(x), and π̃(z) = πfρ̂(z)

for every z ∈ C\x, y}. By Lemma 1, π̃ Pi(ρi) π
f
ρ̂ .

Because f satisfies no veto it is also onto, and then there exists ρ ∈ Π
such that πfρ = π̃. Let m̃i = (ρ, .). By Rule 2, g(m̃i,m−i) = πfρ . Hence,
g(m̃i,m−i) Pi(ρi) g(m), which contradicts that m ∈ N(Γ, ρ, R).

Case 2.2 Either Rule 2 or Rule 3 applies to m.

Then, there is j ∈ E such that, for every ρ ∈ Πn, every expert i 6= j can
get πfρ via Rule 3, by announcing a high enough integer. Because f satisfies
no veto and πfρ̂ 6= πfρ , there is i 6= j such that ρi 6= πfρ̂ . Then, by Claim 1, ρi
Pi(ρi) π

f
ρ̂ . Because f is onto, there exists ρ ∈ Π such that πfρ = ρi. Hence,

expert i can improve by deviating unilaterally from m, which contradicts
that m ∈ N(Γ, ρ, R).

PROOF OF THEOREM 5
Claim 1. For every π ∈ Π and every j ∈ E there exist i 6= j and π̃ ∈ Π

such that π̃ Pi(ρi) π for every (ρi, Ri) ∈ Π×Ri(I, F ).

Suppose first and w.l.o.g. that a, b, c ∈ C are such that a is a friend
of expert 1, b is a friend of expert 2, and c is a friend of expert 3. The
friends of at least two of these experts are not ranked first in π. Suppose
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w.l.o.g. that π(a) 6= 1 and π(b) 6= 1. Suppose i 6= 1. Let x ∈ C be such
that π(x) + 1 = π(a). Let π̃ ∈ Π be such that π̃(a) = π(x), π̃(x) = π(a),
and π̃(y) = π(y) for every y ∈ C\{a, x}. Because a is a friend of 1 and by
definition of R1(I, F ), π̃ P1(ρ1) π for every (ρ1, R1) ∈ Π×R1(I, F ). Suppose
i = 1. Let x ∈ C be such that π(x) + 1 = π(b). Let π̃ ∈ Π be such
that π̃(b) = π(x), π̃(x) = π(b), and π̃(y) = π(y) for every y ∈ C\{b, x}.
Because b is a friend of 2 and by definition of R2(I, F ), π̃ P2(ρ2) π for every
(ρ2, R2) ∈ Π×R2(I, F ).
Suppose now that, w.l.o.g., that a, b, c ∈ C are such that a is an enemy

of expert 1, b is an enemy of expert 2, and c is an enemy of expert 3. The
enemies of at least two of these experts are not ranked last in π. Suppose
w.l.o.g. that π(a) 6= m and π(b) 6= m. Suppose i 6= 1. Let x ∈ C be such
that π(a) + 1 = π(x). Let π̃ ∈ Π be such that π̃(a) = π(x), π̃(x) = π(a),
and π̃(y) = π(y) for every y ∈ C\{a, x}. Because a is an enemy of 1 and
by definition of R1(I, F ), π̃ P1(ρ1) π for every (ρ1, R1) ∈ Π × R1(I, F ).
Suppose i = 1. Let x ∈ C be such that π(b) + 1 = π(x). Let π̃ ∈ Π be
such that π̃(b) = π(x), π̃(x) = π(b), and π̃(y) = π(y) for every y ∈ C\{b, x}.
Because b is an enemy of 2 and by definition of R2(I, F ), π̃ P2(ρ2) π for every
(ρ2, R2) ∈ Π×R2(I, F ).

Claim 2. f is Nash implementable.

The proof is practically the same as the proof of Claim 2 in Theorem 4:
The same mechanism Γ = (M, g) proposed there works in this case. The
only difference occurs in the proof of Case 2.2. Suppose by contradiction
that there exist (ρ,R) ∈ S(I, F ) and m ∈ N(Γ, ρ, R) such that g(m) = πfρ̂
for some ρ̂ ∈ Πn with πfρ̂ 6= πfρ and either Rule 2 or Rule 3 applies to m.
Then, there is j ∈ E such that, for every ρ ∈ Πn, every expert i 6= j can get
πfρ via Rule 3, by announcing a high enough integer. By Claim 1, there exist
i 6= j and π̃ ∈ Π such that π̃ Pi(ρi) π

f
ρ̂ . Because f is onto, there exists ρ ∈ Π

such that πfρ = π̃. Hence, expert i can improve by deviating unilaterally
from m, which contradicts that m ∈ N(Γ, ρ, R).

PROOF OF PROPOSITION 1
Claim 1. Extended and recursive plurality SCFs may fail Nash imple-

mentability when m ≥ 3.
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Suppose w.l.o.g. that C = {a, b, c}.14 Let n = 9. Let f be an extended
plurality SCF. Let ρ, ρ̂ ∈ Πn be as depicted in Table 4 (E1, E2, E3 ⊂ E is a
partition of E such that all the experts in each set have the same judgment;
the second row indicates the number of experts in each group; the judgment
of the experts in each group is represented in the corresponding column).
Because ρ is such that a, b, and c are ranked in the first position by 4, 3, and
2 experts respectively, then πfρ = abc. Similarly, because ρ̂ is such that a, b,
and c are ranked in the first position by 4, 5, and 0 experts respectively, then
πfρ̂ = bac. Therefore, πfρ 6= πfρ̂ . Moreover, the only difference between ρ and ρ̂
is that the experts in E3 change their judgments about the relative positions
of b and c from ρi(c) < ρi(b) to ρ̂i(b) < ρ̂i(c). However, π

f
ρ(b) < πfρ(c).

Then, f does not satisfy WUPE regardless of the jury configuration (even
if all experts are impartial with respect to all pairs of candidates) and, by
Theorem 3, it is not Nash implementable.
Let f̂ be a recursive plurality SCF. Clearly, πf̂ρ(a) = 1. Given Ĉ = C\{a},

ρĈ is such that b and c are ranked in the first position by 7 and 2 experts,
respectively, and then πf̂ρ(b) = 2. Therefore, πf̂ρ = abc. Consider now the

profile ρ̂. Clearly, πf̂ρ̂(b) = 1. Given Ĉ = C\{b}, ρ̂Ĉ is such that a and c
are ranked in the first position by 4 and 5 experts, respectively, and then
πf̂ρ̂(c) = 2. Therefore, πf̂ρ̂ = bca 6= πf̂ρ . Using the same argument as with f ,

we conclude that f̂ is not Nash implementable.

ρ
E1 E2 E3
4 3 2
a b c
b c b
c a a

ρ̂
E1 E2 and E3
4 5
a b
b c
c a

Table 4 Profiles of judgments in the proof of Proposition 1, Claim 1.

Claim 2. Extended and recursive instant-runoff SCFs may fail Nash im-
plementability when m ≥ 3.

Suppose w.l.o.g. that C = {a, b, c}. Let n = 29. Let f be an extended
instant-runoff SCF. Let ρ, ρ̂ ∈ Πn be as depicted in Table 5. Note that ρ

14Although the examples in the proof of this proposition are for the case m = 3, they
are easily generalizable to the case m ≥ 3.
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is such that a, b, and c are ranked in the first position by 11, 8, and 10
experts, respectively. We eliminate b because no candidate has a majority
and b has the fewest first positions in ρ. The judgment profile resulting after
eliminating b in ρ is such that a and c are ranked in the first position by 11
and 18 experts, respectively, and then πfρ = cab. The profile of judgments
ρ̂ is such that a, b, and c are ranked in the first position by 7, 8, and 14
experts, respectively. Then, no candidate has a majority, and a has the
fewest first positions in ρ̂. The judgment profile resulting after eliminating a
in ρ̂ is such that b and c are ranked in the first position by 15 and 14 experts,
respectively, and then πfρ̂ = bca. Therefore, πfρ 6= πfρ̂ . Moreover, the only
difference between ρ and ρ̂ is that the experts in E4 change their judgments
about the relative positions of a and c from ρi(a) < ρi(c) to ρ̂i(c) < ρ̂i(a).
However, πfρ(c) < πfρ(a). Then, f does not satisfy WUPE, regardless of the
jury configuration.
Let f̂ be a recursive instant-runoff SCF. Because every extended instant-

runoff SCF f is such that πfρ = cab, then πf̂ρ(c) = 1. Given Ĉ = C\{c},
ρĈ is such that a and b are ranked in the first position by 21 and 8 experts,
respectively, and then πf̂ρ = cab. Consider now the profile ρ̂. Because every

extended instant-runoff SCF f is such that πfρ̂ = bca, then πf̂ρ(b) = 1. Given

Ĉ = C\{b}, ρ̂Ĉ is such that a and c are ranked in the first position by 21 and

8 experts respectively, and then πf̂ρ̂ = bac 6= πf̂ρ . Using the same argument

above, we conclude that f̂ is not Nash implementable.

ρ
E1 E2 E3 E4
7 8 10 4
a b c a
b c a c
c a b b

ρ̂
E1 E2 E3 and E4
7 8 14
a b c
b c a
c a b

Table 5 Profiles of judgments in the proof of Proposition 1, Claim 2.

Claim 3. Extended and recursive Borda SCFs may fail Nash imple-
mentability when m ≥ 3.

Suppose w.l.o.g. that C = {a, b, c}. Let n = 5. Let f be an extended
Borda SCF. Let ρ, ρ̂ ∈ Πn be as depicted in Table 6. The Borda scores in ρ
for a, b, and c are 3×3+1×2 = 11, 2×3+3×2 = 12, and 1×3+2×2 = 7,
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respectively, and then πfρ = bac. The Borda scores in ρ̂ for a, b, and c are
3×3+2×2 = 13, 2×3+3×2 = 12, and 1×3+1×2 = 5, respectively, and then
πfρ̂ = abc. Therefore, πfρ 6= πfρ̂ . Moreover, the only difference between ρ and ρ̂
is that the experts in E2 change their judgments about the relative positions
of a and c from ρi(c) < ρi(a) to ρ̂i(a) < ρ̂i(c). However, π

f
ρ(a) < πfρ(c).

Then, f does not satisfy WUPE, regardless of the jury configuration.
Let f̂ be a recursive Borda SCF. Because the Borda scores in ρ for a, b,

and c are 11, 12, and 7, respectively, then πf̂ρ(b) = 1. Given Ĉ = C\{b}, the
Borda scores in ρĈ for a and c are 8 and 7 respectively, and then πf̂ρ(a) = 2.

Therefore, πf̂ρ = bac. Consider now the profile ρ̂. Because the Borda scores

in ρ̂ for a, b, and c are 13, 12, and 5, respectively, then πf̂ρ̂(a) = 1. Given

Ĉ = C\{a}, the Borda scores in ρ̂Ĉ for b and c are 10 and 5 respectively, and

then πf̂ρ̂(b) = 2. Therefore, πf̂ρ̂ = abc. Using the same argument as with f ,

we conclude that f̂ is not Nash implementable.

ρ
E1 E2
3 2
a b
b c
c a

ρ̂
E1 E2
3 2
a b
b a
c c

Table 6 Profiles of judgments in the proof of Proposition 1, Claim 3.

PROOF OF PROPOSITION 2
Claim 1. Extended Copeland SCF may fail Nash implementability when

m ≥ 3.

Suppose w.l.o.g. that C = {a, b, c}.15 Let n = 6. Let f be an extended
Copeland SCF. Suppose w.l.o.g. that the tie-breaking rule breaks the ties
between b and c in favor of b. Let ρ, ρ̂ ∈ Πn be as depicted in Table 7. The
majority pairwise comparisons based on ρ are such that: a defeats b; a and

15The examples in the proof of Claims 1 and 2 in this proposition are for the case m = 3,
but they are easily generalizable to the case m ≥ 3. Similarly, the examples in the proof
of Claims 3 and 4 are for the case m = 4, but they are easily generalizable to the case
m ≥ 4.
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c are involved in a tie; b and c are involved in a tie.16 Then, the Copeland
scores in ρ for a, b, and c are 1.5, 0.5, and 1 respectively, and then πfρ = acb.
The majority pairwise comparisons based on ρ̂ are such that: a defeats b and
c; b and c are involved in a tie. Then, the Copeland scores in ρ̂ for a, b,
and c are 2, 0.5, and 0.5, respectively. Hence, there is tie in Copeland Scores
between b and c and πfρ̂ = abc. Therefore, πfρ 6= πfρ̂ . Moreover, the only
difference between ρ and ρ̂ is that the experts in E3 change their judgments
about the relative positions of a and c from ρi(c) < ρi(a) to ρ̂i(a) < ρ̂i(c).
However, πfρ(a) < πfρ(c). Then, f does not satisfy WUPE, regardless of the
jury configuration.

ρ
E1 E2 E3
3 2 1
a c c
b b a
c a b

ρ̂
E1 E2 E3
3 2 1
a c a
b b c
c a b

Table 7 Profiles of judgments in the proof of Proposition 2, Claim 1.

Claim 2. Extended minimax SCF may fail Nash implementability when
m ≥ 3.

Consider the example in the proof of Claim 2 in Proposition 1. Let f be
an extended minimax SCF. Note that ρ is such that (1) 21 experts rank a
before b and 8 experts rank b before a, (2) 11 experts rank a before c and 18
experts rank c before a, and (3) 15 experts rank b before c and 14 experts
rank c before b. Then, a’s largest pairwise defeat in ρ is 7 (against c), b’s
largest pairwise defeat in ρ is 13 (against a), and c’s largest pairwise defeat
in ρ is 1 (against b). Therefore, πfρ = cab. Similarly, ρ̂ is such that (1) 21
experts rank a before b and 8 experts rank b before a, (2) 7 experts rank a
before c and 22 experts rank c before a, and (3) 15 experts rank b before c
and 14 experts rank c before b. Then, a’s largest pairwise defeat in ρ̂ is 15
(against c), b’s largest pairwise defeat in ρ̂ is 13 (against a), and c’s largest
pairwise defeat in ρ̂ is 1 (against b). Therefore, πfρ̂ = cba. Therefore πfρ 6= πfρ̂
and, using the same argument as in the proof of Claim 2 in Proposition 1, it

16For example, in a pairwise comparison between a and b in o, the four experts in E1∪E3
honestly believe that a is better than b, while the two experts in E2 honestly believe that
b is better than a, and then a defeats b.
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can be shown that f is not implementable in Nash equilibrium, regardless of
the jury configuration.
Claim 3. Recursive Copeland SCF may fail Nash implementability when

m ≥ 4.
Suppose w.l.o.g. that C = {a, b, c, d}. Let n = 6. Let f be a recursive

Copeland SCF. Suppose, w.l.o.g., that the tie-breaking rule t is such that,
if Ĉ = {a, b}, t(Ĉ) = b. Let ρ, ρ̂ ∈ Πn be as depicted in Table 8. The
majority pairwise comparisons based on ρ are such that: a defeats c and d;
b defeats c; c defeats d; a and b are involved in a tie; b and d are involved in
a tie. Then, the Copeland scores in ρ for a, b, c, and d are 2.5, 2, 1, and 0.5,
respectively. Therefore, πfρ(a) = 1. Given Ĉ = C\{a}, the Copeland scores
in ρĈ for b, c, and d are 1.5, 1, and 0.5, respectively. Therefore, πfρ(b) = 2.

Finally, given C̃ = C\{a, b}, the Copeland scores in ρC̃ for c and d are 1 and
0, respectively. Therefore, πfρ(c) = 3. Hence, πfρ = abcd. Majority pairwise
comparisons based on ρ̂ are such that: a defeats c and d; b defeats c and d;
c defeats d; a and b are involved in a tie. Then, the Copeland scores in ρ for
a, b, c, and d are 2.5, 2.5, 1, and 0, respectively. Because, t(Ĉ) = b when
Ĉ = {a, b}, then πfρ̂(b) = 1. Given Ĉ = C\{b}, the Copeland scores in ρ̂Ĉ for
a, c, and d are 2, 1, and 0, respectively. Therefore, πfρ̂(a) = 2. Finally, given

C̃ = C\{a, b}, the Copeland scores in ρ̂C̃ for c and d are 1 and 0 respectively.
Therefore, πfρ̂(c) = 3. Hence, πfρ̂ = bacd, and πfρ 6= πfρ̂ . Moreover, the only
difference between ρ and ρ̂ is that the experts in E2 change their judgments
about the relative positions of b and d from ρi(d) < ρi(b) to ρ̂i(b) < ρ̂i(d).
However, πfρ(b) < πfρ(d). Then, f does not satisfy WUPE, regardless of the
jury configuration.

ρ
E1 E2 E3
3 2 1
b a d
a c a
c d b
d b c

ρ̂
E1 E2 E3
3 2 1
b a d
a c a
c b b
d d c

Table 8 Profiles of judgments in the proof of Proposition 2, Claim 3.

Claim 4. Recursive minimax SCF may fail Nash implementability when
m ≥ 4.
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Suppose w.l.o.g. that C = {a, b, c, d}. Let n = 20. Let f be a recursive
minimax SCF. Let ρ, ρ̂ ∈ Πn be as depicted in Table 9. Note that ρ is such
that (1) 10 experts rank a before b and 10 experts rank b before a, (2) 11
experts rank a before c and 9 experts rank c before a, (3) 9 experts rank a
before d and 11 experts rank d before a, (4) 8 experts rank b before c and
12 experts rank c before b, (5) 13 experts rank b before d and 7 experts rank
d before b, and (6) 7 experts rank c before d and 13 experts rank d before
c. Then, a’s largest pairwise defeat in ρ is 2 (against d), b’s largest pairwise
defeat in ρ is 4 (against c), c’s largest pairwise defeat in ρ is 6 (against d),
and d’s largest pairwise defeat in ρ is 6 (against b), Therefore, πfρ(a) = 1.

Given Ĉ = C\{a}, b’s largest pairwise defeat in ρĈ is 4 (against c), c’s largest
pairwise defeat in ρĈ is 6 (against d), and d’s largest pairwise defeat in ρĈ is
6 (against b). Then πfρ(b) = 2. Finally, given C̃ = C\{a, b}, ρC̃ is such that d
defeats c in a majority pairwise comparison, and then πfρ(d) = 3. Therefore,
πfρ = abdc. The majority pairwise comparisons in ρ̂ are the same as in ρ with
the only exception of pair bc: ρ̂ is such that 12 experts rank b before c and 8
experts rank c before b. Then, a’s largest pairwise defeat in ρ̂ is 2 (against d),
b’s largest pairwise defeat in ρ̂ is 0 (against a), c’s largest pairwise defeat in ρ
is 6 (against d), and d’s largest pairwise defeat in ρ is 6 (against b), Therefore,
πfρ̂(b) = 1 and πfρ 6= πfρ̂ . Moreover, the only difference between ρ and ρ̂ is
that the experts in E3 change their judgments about the relative positions
of b and c from ρi(c) < ρi(b) to ρ̂i(b) < ρ̂i(c). However, π

f
ρ(b) < πfρ(c). Then,

f does not satisfy WUPE, regardless of the jury configuration.

ρ
E1 E2 E3 E4 E5 E6
7 5 4 2 1 1
b c a c b d
d a d d d c
a b c b c a
c d b a a b

ρ̂
E1 E2 E3 E4 E5 E6
7 5 4 2 1 1
b c a c b d
d a d d d c
a b b b c a
c d c a a b

Table 9 Profiles of judgments in the proof of Proposition 2, Claim 4.

PROOF OF THEOREM 6
Suppose that C = {a, b, c}, n ≥ 3, and the jury configuration (I, F ) is such
that EI

xy = E for every xy ∈ [C]2.
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Claim 1. If f is a recursive SCF version of the Copeland voting rule with
a tie-breaking rule that satisfies non-favoritism, it is Nash implementable.

Because m = 3, f involves two rounds: In the first round, each candidate
is pairwise compared with each other, and the candidate with the largest
Copeland score gets the first position; in the second round, the two remaining
candidates are compared, the winner gets the second position, and the loser
gets the third position. A tie-breaking rule that satisfies non-favoritism is
used in the event of a tie in either of these two rounds.

Step 1.1. f satisfies WUPE.

Suppose by contradiction that there exist ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ and
such that, for every i ∈ E and xy ∈ [C]2 with ρi(x) < ρi(y) and ρ̂i(y) < ρ̂i(x)
we have πfρ(y) < πfρ(x). Suppose w.l.o.g. that πfρ = abc. Then, majority
pairwise comparisons based on ρ are such that one of the following cases
occurs: (1) a defeats b, a defeats c, and b defeats c; (2) a defeats b, a defeats
c, b and c are involved in a tie, and the tie-breaking rule is such that, if
Ĉ = {b, c}, then t(Ĉ) = b; (3) a and b are involved in a tie, a defeats c, b
defeats c, and the tie-breaking rule is such that if Ĉ = {a, b}, then t(Ĉ) = a;
(4) a defeats b, a and c are involved in a tie, and b defeats c; (5) a and b are
involved in a tie, a defeats c, b and c are involved in a tie, and the tie-breaking
rule is such that if Ĉ = {b, c}, then t(Ĉ) = b; (6) a defeats b, a and c are
involved in a tie, b and c are involved in a tie, and the tie-breaking rule is
such that if Ĉ = {b, c}, then t(Ĉ) = b; (7) a defeats b, c defeats a, b defeats
c, and the tie-breaking rule is such that, if Ĉ = {a, b, c}, then t(Ĉ) = a.17

Step 1.1.1. πfρ̂(a) 6= 1.

Suppose on the contrary that πfρ̂(a) = 1. Because πfρ 6= πfρ̂ , then π
f
ρ̂ = acb.

Therefore, c wins or ties against b in ρ̂. Similarly, because πfρ = abc, b wins
or ties against c in ρ. Moreover, if b and c are tied in ρ, then they are not tied
in ρ̂ (otherwise, their relative positions in πfρ and π

f
ρ̂ should be the same).

Hence, there is some i ∈ E such that ρi(b) < ρi(c) and ρ̂i(c) < ρ̂i(b). Then,
πfρ(c) < πfρ(b), which is a contradiction.

Step 1.1.2. The Copeland score of a does not decrease from ρ to ρ̂.

Suppose not. Then, there is some i ∈ E and some x ∈ {b, c} such that
ρi(a) < ρi(x) and ρ̂i(x) < ρ̂i(a). This implies that πfρ(x) < πfρ(a), which is a
contradiction.
17The case where b defeats a, a defeats c, c defeats b, and the tie-breaking rule is such

that t(abc) = a is not possible. The reason is that, in that case, πfρ(c) = 2.
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Step 1.1.3. The Copeland score of c does not increase from ρ to ρ̂.

Suppose not. Then, there is some i ∈ E and some x ∈ {a, b} such that
ρi(x) < ρi(c) and ρ̂i(c) < ρ̂i(x). This implies that πfρ(c) < πfρ(x), which is a
contradiction.

Step 1.1.4. If b defeats c in ρ, the Copeland score of b does not increase
from ρ to ρ̂.

Suppose not. Then, there is some i ∈ E such that ρi(a) < ρi(b) and
ρ̂i(b) < ρ̂i(a). This implies that πfρ(b) < πfρ(a), which is a contradiction.

Step 1.1.5. Neither Case (1) nor Case (2) occurs.

Suppose on the contrary that Case (1) or Case (2) occurs. Then, the
Copeland score of a in ρ is 2 (the highest possible one). Because πfρ̂(a) 6= 1,
the Copeland score of a decreases from ρ to ρ̂, which contradicts Step 1.1.2.

Step 1.1.6. Neither Case (3) nor Case (4) occurs.

Suppose on the contrary that Case (3) or Case (4) occurs. Then, the
Copeland scores of a, b, and c in ρ are 1.5, 1.5, and 0, or 1.5, 1, and 0.5,
respectively. Because πfρ̂(a) 6= 1, some of the following cases occurs: (i)
the Copeland score of a decreases from ρ to ρ̂; (ii) the Copeland score of
b increases from ρ to ρ̂; (iii) the Copeland score of c increases from ρ to ρ̂.
By Steps 1.1.2 and 1.1.3, neither (i) nor (iii) can occur. Moreover, because b
defeats c in ρ, by Step 1.1.4, (ii) cannot occur either, which is a contradiction.

Step 1.1.7. Neither Case (5) nor Case (6) occurs.

Suppose on the contrary that Case (5) or Case (6) occurs. Because the
tie-breaking rule satisfies non-favoritism, if Ĉ = {a, b}, then t(Ĉ) = a. The
Copeland scores of a, b, and c in ρ are 1.5, 1, and 0.5, or 1.5, 0.5, and 1,
respectively. Because πfρ̂(a) 6= 1, by Steps 1.1.2 and 1.1.3, the only possibility
is that the Copeland scores of a, b, and c in ρ̂ are 1.5, 1.5, and 0, respectively.
Hence, ρ̂ is such that a and b are involved in a tie in the first round of the
recursive Copeland SCF f and then πfρ̂(a) = 1, which is a contradiction.

Step 1.1.8. Case (7) does not occur.

Suppose on the contrary that Case (6) occurs. The Copeland scores of
a, b, and c in ρ are 1. Because πfρ 6= πfρ̂ , the Copeland scores of at least two
candidates change from ρ to ρ̂. Because πfρ̂(a) 6= 1, the Copeland score of a
does not increase from ρ to ρ̂ (if the Copeland score of a increases to 2, then
πfρ̂(a) = 1; if the Copeland score of a increases to 1.5, because πfρ̂(a) 6= 1,
either the Copeland score of b or the Copeland score of c increases, which
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is a contradiction with Step 1.1.4 or Step 1.1.3, respectively). Then, when
going from ρ to ρ̂, either the Copeland score of b increases and the Copeland
score of c decreases or the Copeland score of b decreases and the Copeland
score of c increases, which again is a contradiction with Step 1.1.4 or Step
1.1.3, respectively.

Steps 1.1.5-1.1.8 imply that πfρ 6= abc, a contradiction.

Step 1.2. f satisfies no veto.

Let ρ ∈ Πn, π ∈ Π, and j ∈ E, be such that ρi = π for every i 6= j.
Suppose, w.l.o.g., that π = abc. Then, ρ is such that a beats every other
candidate in pairwise comparisons. Hence, because f is a recursive Copeland
SCF, πfρ(a) = 1. Given Ĉ = C\{a}, ρĈ is such that b beats c in Ĉ and then,
because f is a recursive Copeland SCF, πfρ(b) = 2. Then, πfρ = abc = π.

Because n ≥ 3 and EI
xy = E for every xy ∈ [C]2, Steps 1.1 and 1.2 and

Theorem 4 prove that f is Nash implementable.

Claim 2. If f is a recursive SCF version of the minimax voting rule with
a linear-ordered tie-breaking rule, it is Nash implementable.

Because m = 3, f involves two rounds: In the first round, each candidate
is pairwise compared with each other, and the candidate with the smallest
maximum pairwise defeat gets the first position; in the second round, the two
remaining candidates are compared, the winner gets the second position, and
the loser gets the third position. A linear-ordered tie-breaking rule is used
in the event of a tie in either of these two rounds.

Step 2.1. f satisfies WUPE.

Suppose by contradiction that there exist ρ, ρ̂ ∈ Πn with πfρ 6= πfρ̂ and
such that, for every i ∈ E and xy ∈ [C]2 with ρi(x) < ρi(y) and ρ̂i(y) < ρ̂i(x)
we have πfρ(y) < πfρ(x). Suppose w.l.o.g. that πfρ = abc.

Step 2.1.1. πfρ̂(a) 6= 1.

Identical to Step 1.1.1.

Step 2.1.2. Either (1) the largest pairwise defeat of a increases when going
from ρ to ρ̂ or (2) the largest pairwise defeat of some x ∈ {b, c} decreases
when going from ρ to ρ̂.

Suppose not. Then, because πfρ(a) = 1 and πfρ̂(a) 6= 1, the largest pairwise
defeats of a, b, and c in ρ are equal, the largest pairwise defeat of some
x ∈ {b, c} increases when going from ρ to ρ̂, and the tie-breaking rule t is
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such that t(C) = a and, when Ĉ = {a, y} (where y ∈ C\{a, x}), t(Ĉ) = y.
This contradicts that t is linear-ordered.
Step 2.1.3. The largest pairwise defeat of b in ρ is smaller than the largest

pairwise defeat of b in ρ̂. Moreover, the largest defeat of b in ρ is against c.
Case (1) of Step 2.1.2 cannot occur because it would imply that there is

some i ∈ E and some y ∈ C\{a} such that ρi(a) < ρi(y) and ρ̂i(y) < ρ̂i(a),
and then, πfρ(y) < πfρ(a), which is a contradiction. Therefore, Case (2) of
Step 2.1.2 holds. Let y ∈ C\{x} be the candidate against whom the largest
defeat of x in ρ occurs. Then, x ∈ {b, c} and y ∈ C\{x} are such that
there is some i ∈ E with ρi(y) < ρi(x) and ρ̂i(x) < ρ̂i(y). Note that then
πfρ(x) < πfρ(y). If y = a, then πfρ(x) < πfρ(a), which is a contradiction. If
y = b, then x = c and πfρ(c) < πfρ(b), which is a contradiction. Therefore,
y = c and x = b.
Step 2.1.4. The pairwise comparisons in ρ are such that a ties against b,

a wins or ties against c, and b ties against c.
Because πfρ = abc, b wins or ties against c. Moreover, because the largest

defeat of b in ρ is against c, then b does not win against c (otherwise πfρ(b) =
1). Therefore, b ties against c. Because the largest defeat of b in ρ is against
c, then b wins or ties against a. Moreover, because b ties against c, then b
does not win against a (otherwise πfρ(a) 6= 1). Therefore, b ties against a.
Finally, because c ties against b, then c does not win against a (otherwise
πfρ(a) 6= 1).
Step 2.1.5. The pairwise comparisons in ρ̂ are such that a ties against b,

a wins or ties against c, and b wins against c.
Because a wins or ties against c in ρ, then a wins or ties against c in ρ̂

(otherwise there is i ∈ E such that ρi(a) < ρi(c) and ρ̂i(c) < ρ̂i(b), and then
πfρ(c) < πfρ(b), which is a contradiction). Because the largest pairwise defeat
of b in ρ is against c, b ties against c in ρ, and the largest pairwise defeat
of b in ρ is smaller than the largest pairwise defeat of b in ρ̂, then b wins
against c in ρ̂. Because, a ties against b in ρ, then a wins or ties against b
in ρ̂ (otherwise there is i ∈ E such that ρi(a) < ρi(b) and ρ̂i(b) < ρ̂i(a), and
then πfρ(b) < πfρ(a), which is a contradiction). If a wins against b in ρ̂, then
the largest pairwise defeat of a in ρ̂ is zero, while the largest pairwise defeats
of b and c in ρ̂ are larger than zero. Therefore, πfρ̂(a) = 1, which by Step
2.1.1 is not possible. Then, a ties against b in ρ̂.
Step 2.1.6. The pairwise comparisons in ρ are such that a does not win

against c.
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Suppose on the contrary that a wins against c in ρ. Then, a also wins
against c in ρ̂ (otherwise, there is some i ∈ E such that ρi(a) < ρi(c) and
ρ̂i(c) < ρ̂i(b), and then π

f
ρ(c) < πfρ(b), which is a contradiction). Then, by

Step 2.1.4, the largest pairwise defeats of a and b in ρ are zero, while the
largest pairwise defeat of c in ρ is larger than zero. Hence, in the first round
of the recursive process in ρ there is a tie between a and b. Because πfρ = abc,
the tie-breaking rule used by f breaks this tie in favor of a. Similarly, by
Step 2.1.5, the largest pairwise defeats of a and b in ρ̂ are zero, while the
largest pairwise defeat of c in ρ̂ is larger than zero. Then, in the first round
of the recursive process in ρ̂ there is a tie between a and b. Because the
tie-breaking rule used by f breaks this tie in favor of a, πfρ̂(a) = 1, which by
Step 2.1.1 is not possible.

Step 2.1.7. The pairwise comparisons in ρ are such that a does not tie
against c.

Suppose on the contrary that a ties against c in ρ. Then, by Step 2.1.4,
the largest pairwise defeats of a, b, and c in ρ are zero. Therefore, in the first
round of the of the recursive process in ρ there is a tie between a, b, and c.
Because πfρ = abc, the tie-breaking rule used by f resolves this tie in favor of
a. By Step 2.1.5, the largest pairwise defeats of a and b in ρ̂ are zero, while
the largest pairwise defeat of c in ρ̂ is larger than zero. Then, in the first
round of the recursive process in ρ̂ there is a tie between a and b. Because
the tie-breaking rule used by f is linear-ordered and it resolves a tie among
a, b, and c in favor of a, then it also resolves a tie between a and b in favor
of a. Then, πfρ̂(a) = 1, which by Step 2.1.1 is not possible.

Steps 2.1.6 and 2.1.7 contradict Step 2.1.5.

Step 2.2. f satisfies no veto.

Identical to Step 1.2.

Because n ≥ 3 and EI
xy = E for every xy ∈ [C]2, Steps 2.1 and 2.2 and

Theorem 4 prove that f is Nash implementable.

PROOF OF REMARK 1
Suppose that C = {a, b, c}, n ≥ 3, and the jury configuration (I, F ) is such
that EI

xy = E for every xy ∈ [C]2.

Claim 1. A recursive SCF version of the Copeland rule whose tie-breaking
rule does not satisfy non-favoritism may fail to be Nash implementable.
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Suppose that n = 6. Let f be a recursive Copeland SCF with a tie-
breaking rule t that does not satisfy non-favoritism. In particular, suppose
w.l.o.g. that, if Ĉ ⊂ C is such that

∣∣∣Ĉ∣∣∣ = 2 and b ∈ Ĉ, then t(Ĉ) = b. Let
ρ, ρ̂ ∈ Πn be as depicted in Table 10. The majority pairwise comparisons
based on ρ are such that: a and b are involved in a tie; a defeats c; b and c
are involved in a tie. Then, the Copeland scores in ρ for a, b, and c are 1.5,
1, and 0.5, respectively. Therefore, πfρ(a) = 1. Moreover, because b and c are
involved in a tie in the second round and t(Ĉ) = b when Ĉ = {b, c}, then we
have πfρ(b) = 2. Hence πfρ = abc. The majority pairwise comparisons based
on ρ̂ are such that: a and b are involved in a tie; a defeats c; b defeats c.
Then, the Copeland scores in ρ̂ for a, b, and c are 1.5, 1.5, and 0, respectively.
Because a and b are involved in a tie in the first round and t(Ĉ) = b when
Ĉ = {a, b}, then we have πfρ̂(b) = 1. Moreover, because a defeats c in
a majority pairwise comparison based on ρ̂, we have πfρ̂(a) = 2. Hence
πfρ̂ = bac. Then, πfρ 6= πfρ̂ . Moreover, the only difference between ρ and ρ̂ is
that the experts in E1 change their judgments about the relative positions
of b and c from ρi(c) < ρi(b) to ρ̂i(b) < ρ̂i(c). However, π

f
ρ(b) < πfρ(c). Then,

f does not satisfy WUPE, regardless of the jury configuration.

ρ
E1 E2 E4
3 2 1
a b b
c c a
b a c

ρ̂
E1 E2 E4
3 2 1
a b b
b c a
c a c

Table 10 Profiles of judgments in the proof of Remark 1, Claim 1.

Claim 2. A recursive SCF version of the minimax rule whose tie-breaking
rule is not linear-ordered may fail to be Nash implementable.
Suppose that n = 5. Let f be a recursive minimax SCF with a tie-

breaking rule t that is not linear-ordered. In particular, suppose w.l.o.g.
that (i) t(C) = a and (ii) if Ĉ = {a, b}, t(Ĉ) = b. Let ρ, ρ̂ ∈ Πn be as
depicted in Table 11. Note that ρ is such that (1) 3 experts rank a before b
and 2 experts rank b before a, (2) 2 experts rank a before c and 3 experts
rank c before a, and (3) 3 experts rank b before c and 2 experts rank c before
b. Then, a’s largest pairwise defeat in ρ is 1 (against c), b’s largest pairwise
defeat in ρ is 1 (against a), and c’s largest pairwise defeat in ρ is 1 (against b).
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Because all candidates are involved in a tie in the first round and t(C) = a,
we have πfρ(a) = 1. Moreover, because b defeats c in a majority pairwise
comparison based on ρ, we have πfρ(b) = 2. Hence πfρ = abc. Similarly, ρ̂ is
such that (1) 3 experts rank a before b and 2 experts rank b before a, (2) 2
experts rank a before c and 3 experts rank c before a, and (3) 4 experts rank
b before c and 1 expert rank c before b. Then, a’s largest pairwise defeat
in ρ̂ is 1 (against c), b’s largest pairwise defeat in ρ̂ is 1 (against a), and c’s
largest pairwise defeat in ρ̂ is 3 (against b). Because a and b are involved
in a tie in the first round and, if Ĉ = {a, b}, t(Ĉ) = b, we have πfρ̂(b) = 1.
Moreover, because c defeats a in a majority pairwise comparison based on
ρ̂, we have πfρ̂(c) = 2. Hence πfρ̂ = bca. Then, πfρ 6= πfρ̂ . Moreover, the only
difference between ρ and ρ̂ is that the experts in E2 change their judgments
about the relative positions of b and c from ρi(c) < ρi(b) to ρ̂i(b) < ρ̂i(c).
However, πfρ(b) < πfρ(c). Then, f does not satisfy WUPE, regardless of the
jury configuration.

ρ
E1 E2 E3 E4
2 1 1 1
a c c b
b b a c
c a b a

ρ̂
E1 E2 E3 E4
2 1 1 1
a b c b
b c a c
c a b a

Table 11 Profiles of judgments in the proof of Remark 1, Claim 2.

PROOF OF PROPOSITION 3
Suppose by contradiction that f ∗ does not satisfy WUPE. Then, there are
ρ, ρ̂ ∈ Πn such that (i) πf

∗
ρ 6= πf

∗

ρ̂ and (ii) for every i ∈ E and xy ∈ Ii
such that πf

∗
ρ (x) < πf

∗
ρ (y) and ρi(x) < ρi(y), we have ρ̂i(x) < ρ̂i(y). By

(i), there are x, y ∈ C such that πf
∗
ρ (x) < πf

∗
ρ (y) and πf

∗

ρ̂ (y) < πf
∗

ρ̂ (x).
Let k ∈ {1, ...,m} be the number of the rule in the definition of f ∗ that
determines the relative ranking between x and y in πf

∗
ρ (i.e., the fact that

πf
∗
ρ (x) < πf

∗
ρ (y) is determined by Rule k of f ∗). Note that then π∗(x) ≥ k

and π∗(y) ≥ k (where π∗ is the arbitrary ranking used by f ∗).

Claim 1. π∗(x) 6= k.
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Suppose that π∗(x) = k. Then π∗(y) > k and, since πf
∗
ρ (x) < πf

∗
ρ (y),∣∣{i ∈ EI

xy | ρi(x) < ρi(y)}
∣∣ ≥ |EIxy|

2
. Then, by (ii),

∣∣{i ∈ EI
xy | ρ̂i(x) < ρ̂i(y)}

∣∣ ≥
|EIxy|
2
and, if the relative ranking between x and y in πf

∗

ρ̂ is not determined by

any Rule l < k, we have πf
∗

ρ̂ (x) < πf
∗

ρ̂ (y), which is a contradiction. Therefore,

the relative ranking between x and y in πf
∗

ρ̂ is determined by some Rule l < k.

In particular, because πf
∗

ρ̂ (y) < πf
∗

ρ̂ (x), we have πf
∗

ρ̂ (y) < πf
∗
ρ (x∗l ) < πf

∗

ρ̂ (x),
where x∗l is the l-th candidate in π

∗. Moreover, since the relative ranking be-
tween x and y in πf

∗
ρ is determined by Rule k > l , then either (1) πf

∗
ρ (x) <

πf
∗
ρ (x∗l ) and π

f∗
ρ (y) < πf

∗
ρ (x∗l ) or (2) π

f∗
ρ (x∗l ) < πf

∗
ρ (x) and πf

∗
ρ (x∗l ) < πf

∗
ρ (y)

(otherwise, the relative ranking between x and y in πf
∗
ρ would be determined

by Rule l). If (1) happens, then
∣∣∣{i ∈ EI

x∗l x
| ρi(x) < ρi(x

∗
l )}
∣∣∣ >

∣∣∣∣EIx∗
l
x

∣∣∣∣
2

and

then, by (ii),
∣∣∣{i ∈ EI

x∗l x
| ρ̂i(x) < ρ̂i(x

∗
l )}
∣∣∣ >

∣∣∣∣EIx∗
l
x

∣∣∣∣
2
, which contradicts that

πf
∗
ρ (x∗l ) < πf

∗

ρ̂ (x). If (2) happens, then
∣∣∣{i ∈ EI

x∗l y
| ρi(x∗l ) < ρi(y)}

∣∣∣ ≥
∣∣∣∣EIx∗

l
y

∣∣∣∣
2

and then, by (ii),
∣∣∣{i ∈ EI

x∗l y
| ρ̂i(x∗l ) < ρ̂i(y)}

∣∣∣ ≥
∣∣∣∣EIx∗

l
y

∣∣∣∣
2
, which contradicts

that πf
∗

ρ̂ (y) < πf
∗
ρ (x∗l ).

Claim 2. π∗(y) 6= k.

Suppose that π∗(y) = k. Then π∗(x) > k and, since πf
∗
ρ (x) < πf

∗
ρ (y),∣∣{i ∈ EI

xy | ρi(x) < ρi(y)}
∣∣ > |EIxy|

2
. Then, by (ii),

∣∣{i ∈ EI
xy | ρ̂i(x) < ρ̂i(y)}

∣∣ >
|EIxy|
2
and, if the relative ranking between x and y in πf

∗

ρ̂ is not determined by

any Rule l < k, we have πf
∗

ρ̂ (x) < πf
∗

ρ̂ (y), which is a contradiction. There-

fore, the relative ranking between x and y in πf
∗

ρ̂ is determined by some Rule
l < k. The rest of the proof of this claim is analogous to that of Claim 1.

Claim 3. Either π∗(x) ≤ k or π∗(y) ≤ k.

Suppose that π∗(x) > k and π∗(y) > k. Because the relative ranking
between x and y in πf

∗
ρ is determined by Rule k of f ∗ and πf

∗
ρ (x) < πf

∗
ρ (y),

then πf
∗
ρ (x) < πf

∗
ρ (x∗k) < πf

∗
ρ (y), where x∗k is the k-th candidate in π

∗. The

fact that πf
∗
ρ (x) < πf

∗
ρ (x∗k) implies that

∣∣∣{i ∈ EI
x∗kx
| ρi(x) < ρi(x

∗
k)}
∣∣∣ >

∣∣∣∣EIx∗
k
x

∣∣∣∣
2
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and then, by (ii),
∣∣∣{i ∈ EI

x∗kx
| ρ̂i(x) < ρ̂i(x

∗
k)}
∣∣∣ >

∣∣∣∣EIx∗
k
x

∣∣∣∣
2
. Similarly, the fact

that πf
∗
ρ (x∗k) < πf

∗
ρ (y) implies that

∣∣∣{i ∈ EI
x∗ky
| ρi(x∗k) < ρi(y)}

∣∣∣ ≥
∣∣∣∣EIx∗

k
y

∣∣∣∣
2

and

then, by (ii),
∣∣∣{i ∈ EI

x∗ky
| ρ̂i(x∗k) < ρ̂i(y)}

∣∣∣ ≥
∣∣∣∣EIx∗

k
y

∣∣∣∣
2
. Then, in case the relative

ranking between x and y in πf
∗

ρ̂ has not been determined by any Rule l < k

of f ∗, we have πf
∗

ρ̂ (x) < πf
∗

ρ̂ (x∗k) < πf
∗

ρ̂ (y), which contradicts that πf
∗

ρ̂ (y) <

πf
∗

ρ̂ (x). Therefore, the relative ranking between x and y in πf
∗

ρ̂ is determined
by some Rule l < k. The rest of the proof of this claim is analogous to that
of Claim 1.

From Claims 1, 2, and 3, we have that either π∗(x) < k or π∗(y) <
k, which contradicts that the relative ranking between x and y in πf

∗
ρ is

determined by Rule k of f ∗.
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