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Abstract

The median-preserving spread (MPS) ordering for ordinal variables (Allison and

Foster, 2004) has become ubiquitous in the inequality literature. However, the litera-

ture lacks an explicit frequentist method for inferring whether an ordered multinomial

distribution G is more unequal than F according to the MPS criterion. We devise

formal statistical tests of the hypothesis that G is not an MPS of F . Rejection of

this hypothesis enables the conclusion that G is robustly more unequal than F . Us-

ing Monte Carlo simulations and novel graphical techniques, we find that the choice

between Z and Likelihood Ratio test statistics does not have a large impact on the

properties of the tests, but that the method of inference does: bootstrap inference has

generally better size and power properties than asymptotic inference. We illustrate the

usefulness of our tests with three applications: (i) happiness inequality in the United

States, (ii) self-assessed health in Europe and (iii) sanitation ladders in Pakistan.
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1 Introduction

Despite the prominence of ordinal data in the social sciences (e.g. subjective wellbeing, self-

assessed health, dwelling conditions, etc.), inequality assessments of ordered multinomial

distributions pose significant measurement challenges. Chiefly, the differences between the

ordered categories are not commensurable (Stevens, 1946); therefore any numerical scales

attributed to them will be arbitrary. Then, the robustness of these inequality comparisons to

alternative scales is not guaranteed (Mendelson, 1987; Allison and Foster, 2004). In order to

solve this fundamental problem, suitable measurement tools have been proposed (see Silber

and Yalonetzky, 2021, for a recent review).

One such tool is a set of partial orderings known as the quantile-preserving spreads

(Mendelson, 1987), of which the median-preserving spread is by far the most popular in the

literature, especially the rendering by Allison and Foster (2004) and many key works there-

after. Median-preserving spreads rank ordered multinomial distributions sharing a common

median category in terms of the size of their tails. Distributions with ‘thicker’ tails, i.e. with

a higher proportion of the population further away from the common median, are deemed

more unequal. In that sense, the median-preserving spread (henceforth MPS) partial or-

dering is an extension of the mean-preserving spread relation proposed by Rothschild and

Stiglitz (1970) into the world of ordinal variables. Naturally, the orderings are partial be-

cause not all distributions with a common median have unambiguously thicker or thinner

tails across the whole domain of categories.

Besides being intrinsically interesting, the MPS partial ordering provides a useful crite-

rion to test the robustness of inequality comparisons with ordinal data to alternative choices

of inequality indices characterised by an ‘aversion to MPS’. Introduced by Apouey (2007)

and Abul Naga and Yalcin (2008), this property requires any inequality index to rank distri-

bution g as more unequal than f whenever the former is obtained from the latter through

a (sequence of) MPS transferring probability mass toward the tails and away from the pre-
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served median category. Kobus (2015) showed that all inequality indices averse to MPS

transformations agree in ranking any pair of distributions belonging in the MPS partial

ordering.

Ever since Allison and Foster (2004) popularised the notion of MPS, empirical illus-

trations have followed. For instance, based on data from the American National Health

Interview Survey, Allison and Foster (2004) conclude that self-reported health in Texas is

an MPS of Pennsylvania’s, implying that health levels in Pennsylvania are less unequal than

in Texas. Dutta and Foster (2013) find that happiness inequality in the US fell over the

1970s and 80s, but has increased again since the 90s. Madden (2010) and Balestra and

Ruiz (2015) have performed similar assessments in the realms of self-assessed health, edu-

cation levels and subjective wellbeing. Such conclusions are potentially of interest to both

researchers and policymakers.

However, these empirical studies do not rule out the possibility that the observed order-

ings are a result of random sampling. Our contribution is to devise statistical tests that can

allow us to conclude that the populations underlying the samples are also ordered by MPS.

Our first goal is to derive an appropriate null hypothesis. Davidson and Duclos (2013)

derive tests for the partial ordering of first-order stochastic dominance (FOSD) involving

cardinal variables, such as income or consumption expenditure. They choose to specify a

null hypothesis that the pair of distributions is not ordered in a specific direction, because

rejection of this hypothesis leads to the conclusion that the two population distributions are

ordered, which is normally the outcome of most interest. For the same reason, in section 2

we posit the hypothesis that a given pair of distributions is not ordered by MPS. Thus a

pair of distributions, (F ,G), lies in our null space if it has least one of three properties:

either F and G do not share the same median; or the potentially more equal distribution,

F , does not FOSD the potentially more unequal population, G, below the median; or G

does not FOSD F above the median. We develop a novel graphical depiction of the null and

alternative spaces, which is useful for visually checking whether a pair of samples is ordered.
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The FOSD conditions stem from the definition of the MPS partial ordering (Allison and

Foster, 2004) and are analogous to those characterising the null space of Davidson and Duclos

(2013). The median condition is new and gives our null and alternative spaces rather unique

characteristics. Specifically, the boundary of the null space will be shown to be the union

of two sets, that we shall refer to as the ‘dominance’ and ‘median’ boundaries. In turn this

characteristic of the boundary, arising as the union of two sets, has further implications for

how we compute the closest null distribution. This is important for constructing the Quasi

Maximum Likelihood Estimator (QMLE) (section 3). Furthermore the derivation of the

closest null distribution is used to investigate the power of the tests (section 4).

In section 3 we define a likelihood ratio (LR) statistic and a standardised (Z) statistic.

We characterise their respective asymptotic distributions under the null, yielding two tests:

the asymptotic LR test and the asymptotic Z test. We then construct two corresponding

bootstrap tests, the bootstrap LR test and the bootstrap Z test, and state a result on their

inference properties. Thus the paper provides a family of four tests for empirical applications.

In section 4 we use Monte Carlo simulations to compare the tests’ size and power proper-

ties. Regarding size, our main finding is that our tests are mostly correctly sized, even when

one or both samples comprise as few as 10 observations. We also find that the empirical

size of bootstrap tests is often closer to the nominal size than asymptotic tests’, and that

the choice of tests statistic is usually inconsequential. Notable exceptions to these results

arise when asymptotic inference is used in circumstances where the size of the sample drawn

from the more equal distribution F is an order of magnitude smaller than that drawn from

the more unequal distribution G, and the distributions have a pair of similar cumulants

(i.e. Fi ≈ Gi for some i). Regarding power, our main result is that the tests have broadly

the same actual power (i.e. the rate of rejection of a false hypothesis relative to the rate of

rejection of the closest true hypothesis is very similar across all tests), but the exceptions

are slightly different than for size. Specifically, we find that bootstrap inference is more

powerful against almost all alternatives when the size of the sample drawn from G is very
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small (close to 10), but that asymptotic inference can be more powerful when the size of the

sample drawn from F is very small and the median of G is close to the edge of the median

category (i.e. Gm ≈ 1
2

where m is the median state of G). All the tests have low power

against certain sets of circumstances: firstly, when both true cumulative distributions take

values close to 0.5 at the median category (Fi ≈ Gi ≈ 1
2

for some i); and secondly when the

size of the sample drawn from F is small in absolute terms. On the basis of this result, we

conclude that asymptotic inference is generally adequate when sample sizes drawn from the

two distributions are relatively well matched, but bootstrap inference should be considered

when sample sizes differ by an order of magnitude or more.

The graphical tools deployed to illustrate the size and power properties of the tests are

themselves novel, and, we hope, useful to researchers. A standard size curve plots the actual

(empirical) rejection rate of a test against its nominal size for a given null distribution.

However the intricacies of our null space are difficult to capture with a small selection of null

distributions. Instead, we hold the nominal size constant (at levels 1, 5 and 10%) and plot

the empirical size against a continuum of distributions in the boundary of the null space,

thereby obtaining an upper bound on the actual size of the tests. Similarly, a standard size-

power curve1 plots the rejection rate for a distribution in the alternative space against the

rejection for the closest corresponding distribution in the null space. Our power-locus curve

plots the rejection rate for a continuum of distributions in the alternative space, which we

call the ‘interior locus’. We argue that the power properties against this set of alternatives

is indicative of properties against all other distributions in the alternative space.

In section 5 we demonstrate the broad usefulness of our tests in three diverse areas of

applications covering subjective wellbeing (happiness in the United States), health economics

(self-assessed health in Europe) and development economics (sanitation ladders in Pakistan).

This paper can be deemed a sequel to Mendelson (1987); Allison and Foster (2004); and

Kobus (2015) in so far as we devise formal tests for their proposed inequality relations. In

1We follow the approach of MacKinnon and Davidson (1996) and Davidson and MacKinnon (1998).
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fact, all the methods discussed in this paper generalise to accommodate Mendelson (1987)’s

more general family of quantile preserving spreads, of which MPS and FOSD are special cases.

Yalonetzky (2013) devises a similar asymptotic test for first-order stochastic dominance with

ordinal variables, which we extend to suit our purposes. As Davidson and Duclos (2013),

we adopt a likelihood ratio statistic combined with bootstrap inference, but we additionally

consider both a Z statistic and asymptotic inference. Our work is also related to Abul Naga

and Stapenhurst (2015) and Abul Naga et al. (2020): while they perform inference on a

random variable derived from a particular class of indices consistent with the MPS ordering,

we perform inference on the binary outcome given by the partial ordering itself.

The rest of the paper proceeds as follows. Section 2 introduces the MPS partial ordering

along with the required notation, motivates the null hypothesis of no ordering for a pair

of distributions, and introduces a novel graphical representation of the parameter space.

Section 3 develops our four proposed tests for the MPS partial ordering, combining two test

statistics with two methods to compute p-values from the sampling distribution under the

null. Section 4 studies and compares the size and power properties of the four tests, aided

by novel size-power curves specifically tailored for our testing problem. Section 5 provides

our empirical illustrations. Finally section 6 offers some concluding remarks.

2 Median Preserving Spreads and the Null Hypothesis

of No Ordering

Following the required introduction of notation, this section defines Allison and Foster

(2004)’s MPS partial ordering and describes our null and alternative hypotheses. Then

we introduce a novel graphical technique for locating pairs of distributions relative to the

null and alternative spaces.
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2.1 Notation

Let k ∈ N denote the number of ordered categories and [k] := {1, . . . , k} denote the set of

categories. We focus on a pair of samples (x,y) of respective sizes nx and ny. Each sample

is a vector of frequencies which add up to the sample size, for example x = (x1, . . . , xk) ∈

Nk and
∑k

i=1 xi = nx. Since the states are ordered we can define the cumulants X =

(
∑1

j=1 xj, . . . ,
∑k

j=1 xj = nx) of x; the vector of cumulants Y is defined analogously for y.

We use X[i] := (X1, . . . , Xi) to denote the first i cumulants of X. The sample space is then

X (k, nx, ny) = {(x,y) ∈ Nk ×Nk | Xk = nx and Yk = ny}. The combined sample is denoted

by W = X + Y with combined sample size nx + ny.

Our ultimate goal is to perform inference on the pair of distributions (f , g) underlying the

pair (x,y). Specifically, x ∼ f and y ∼ g where fi (respectively gi) denotes the probability

that any particular observation from population f (respectively g) falls into category i. We

denote their cumulative distribution functions (henceforth CDF) by F and G respectively.

Let L = (L1, . . . , Lk) := W /(nx+ny) be the sample-weighted average empirical distribution

function (EDF).

The parameter space involving all possible pairs of ordered distributions with a given

natural number of categories, k > 1, is defined by:

Θ := {(f , g) ∈ [0, 1]k × [0, 1]k | Fk = Gk = 1}.2

A generic parameter vector is denoted by θ = (f , g) ∈ Θ. Samples x and y are drawn from

independent ordered multinomial distributions, so the likelihood of (x,y) given θ is:

Pθ[x,y] :=
nx!∏k
i=1 xi!

k∏
i=1

fxii
ny!∏k
i=1 yi!

k∏
i=1

gyii .

Also note that ( x
nx
, y
ny

) ∈ Θ.

2Even though the sample size (nx, ny) is normally considered a parameter of the multinomial distribution,

we do not consider it as such because in our applications it is normally fixed (e.g. by survey design).
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Finally, the following sample-size-weighted Euclidean metric for the distance between two

distributions will prove useful in several instances below:

d(θ,θ′) =

√√√√ nx
nx + ny

k∑
i=1

(fi − f ′i)2 +
ny

nx + ny

k∑
i=1

(gi − g′i)2.

2.2 Median Preserving Spreads

We define the median of F to be a category m ∈ [k] such that Fm−1 < 0.5 and Fm ≥ 0.5. We

assume a unique median category for the purposes of exposition, but all the results generalise

to cases with multiple median categories.3 Allison and Foster (2004) discuss the difficulties

of defining suitable measures of dispersion for ordinal variables. They propose the partial

ordering over the sample space X which ranks distributions according to their spread. Here

we define the analogous partial ordering for a pair of distributions:

Definition 1 (Median Preserving Spread). Let (f , g) ∈ Θ. We say that g is a strict median

preserving spread (MPS) of f , or that f and g are ordered, and write g � f , if and only if

there exists a category m such that all the following conditions hold:

[M1] Gm−1 <
1
2

[M2] 1
2
< Gm

[D1] Gi > Fi for all i ∈ [m− 1]

[D2] Gi < Fi for all i ∈ [k − 1] \ [m− 1] .

We call f the concentrated distribution and g the spread distribution. If g is not an MPS

of f then f and g are unordered, and g 6� f . If one or more of the inequalities holds

with equality then we say that g is a weak MPS of f and write g � f . A pair of samples

(x,y) ∈ X is ordered if and only if the distributions x
nx

and y
ny

are ordered.

3For the case of median-preserving spreads with multiple median categories see Kobus (2015).
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2.3 The null hypothesis of no ordering

We propose tests of the null hypothesis that g is not a strict MPS of f because we are

mainly interested in situations where x and y are ordered and want to confirm whether this

is indicative of an ordering in the underlying populations. Following Davidson and Duclos

(2013), if we reject the null hypothesis that the populations are not ordered, then we logically

conclude that they are ordered.

The null space is the subset of all parameter values such that g is not a strict MPS of f :

Θ0 = {(f , g) ∈ Θ | g 6� f}. 4

Any distributional pair in the null space is denoted by θ0 ∈ Θ0. The alternative space is

the complement of the null space, which is equivalent to the set of all ordered pairs:

Θ1 := Θc
0 = {(f , g) ∈ Θ | g � f}

A generic element of Θ1 is denoted by θ1.

We can graphically depict a two dimensional projection of the null and alternative spaces

relative to the whole parameter space. Specifically, a pair of distributions (f , g) ∈ Θ can be

written as a set of k pairs of cumulants (Fi, Gi). Figure 1 plots the pairs of coordinates of

distributions F = (3/24, 9/24, 17/24, 21/24, 1) and G = (7/24, 11/24, 15/24, 17/24, 1) in the

unit square. Every set of coordinates must include the point (1, 1) and the set of cumulant

coordinates is necessarily non-decreasing as we move from left to right because both F and

G must be individually non-decreasing. The median category of F (resp. G) is given by the

state corresponding to the first coordinate to the right of the vertical (resp. horizontal) line

at 1
2
. We know the two distributions share the same median category (m = 3) because all the

coordinates lie in the south-west and north-east quadrants. Any pair of distributions with a

4The set Θ0 is rotationally symmetric, meaning that reversing the ordering of the categories does not

alter the MPS partial ordering of the original distributions. Therefore, all the tests we propose are invariant

to reverse ordering of the categories.
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coordinate in either the north-west or south-east quadrants do not share the same median and

therefore cannot be ordered. Similarly, we can see that f first-order dominates g below the

median and g first-order dominates f at and above the median because all the coordinates lie

in the interiors of the two triangles with vertices (0, 0), (1
2
, 1

2
), (0, 1

2
) and (1, 1), (1

2
, 1

2
), (1, 1

2
),

labelled Θ1 in figure 1. It follows from definition 1 that g is an MPS of f . In general,

(f , g) ∈ Θ1 if and only if their coordinates are all contained in the triangles labelled Θ1.

Conversely (f , g) ∈ Θ0 if and only if at least one of their coordinates is contained outside

of these triangles, in either of the parallelograms with vertices (0, 1
2
), (0, 1), (1, 1), (1

2
, 1

2
) and

(0, 0), (1, 0), (1, 1
2
), (1

2
, 1

2
), labelled Θ0 in figure 1.

0
0

Θ0

Θ0

Θ1

Θ1

G1

G2

0.5

G3

G4

G5 = 1

F1 F2 F3 F4 F5 = 10.5

Figure 1: The parameter space, null space and alternative space projected onto the unit

square. The red and blue dots illustrate, respectively, the closest distributions on the median

and dominance boundaries to the distribution represented by black dots.

The boundary of the null space plays an important role in the proposed tests. Firstly,
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the QMLE lies in the boundary of the null space. We will use the QMLE both to calculate

the likelihood ratio statistic, and to draw bootstrap samples when carrying out bootstrap

inference. Secondly, when we study the empirical size of the tests, we will choose data-

generating processes in the boundary of the null space in order to provide an upper bound

on the size of the tests of distributions in the interior of the null space. Thirdly, when we

study the power of the tests, we will compare the rejection rates of distributions in the

alternative space with rejection rates of the corresponding ‘closest null’ distribution, which

lie in the boundary of Θ0.

We characterise the boundary of the null space as the union of two sets:

Definition 2. The median subset of the boundary of Θ0 (henceforth ‘median boundary’) is

the set of all weakly ordered distributions for which at least one of the median constraints

in definition 1 hold with equality:

M̄ = {(F ,G) ∈ (∆[k])2 | F � G and Gi =
1

2
for some i ∈ [k]}.

The dominance subset of the boundary of Θ0 (henceforth ‘dominance boundary’) is the set

of all weakly ordered distributions for which at least one of the dominance constraints in

definition 1 hold with equality:

D̄ = {(F ,G) ∈ (∆[k])2 | F � G and Fi = Gi for some i ∈ [k]}.

The boundary can now be characterised:

Lemma 1. The boundary of the null space is equal to the union of the median and dominance

boundaries:

∂Θ0 = M̄ ∪ D̄.

Proof. See appendix A.

A pair of distributions lies on the median boundary if and only if it has one or more

coordinates lying on the horizontal dashed line intersecting the vertical axis at (0,0.5) in
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figure 1, and all other coordinates lying in the interior of Θ0 triangles. Similarly, a pair of

distributions lies on the dominance boundary if and only if it has one or more coordinates

lying on the 45◦ dashed line in figure 1, and all other coordinates lying in the interior of Θ0

triangles. We illustrate examples of distributions on the median and dominance boundaries

in figure 1.

3 Statistical Tests of No Ordering

A statistical test can be regarded as a function P : X → [0, 1] returning a P value for every

sample in the sample space X . The P value describes the likelihood of observing a sample

‘as extreme’ as (x,y) when the null hypothesis is true, so a low P value can be taken as

evidence that the null hypothesis is false. If the P -value is less than α ∈ (0, 1) then we ‘reject

the null hypothesis at the α% level.’

A test statistic is a function S : X → R which formalises what it means for one sample to

be ‘as extreme’ as another by associating each sample with a real number: sample (x′,y′) is

more extreme under the null than (x,y) if S(x′,y′) ≥ S(x,y). Thus we consider four tests

of the form T (x,y) = Pθ0 [S(x′,y′) ≥ S(x,y)]. The remainder of this section discusses our

choices of test statistic (LR or Z) and the method of inference (asymptotic or bootstrap).

3.1 Test statistics

The LR statistic The log likelihood ratio (LR) statistic is a natural choice due to its

intuitive construction and well-known optimality in terms of uniform power (see section 4.2).

The LR statistic of a sample (x,y) is the ratio of its unconstrained maximum likelihood

function to its constrained counterpart, the QMLE.

Definition 3. The log likelihood ratio (LR) statistic of a sample (x,y) is given by:

LR(x,y) := 2[ln(Pθ∗ [x,y])− ln(Pθ̃[x,y])] (1)
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where θ∗ ∈ arg maxθ∈Θ Pθ[x,y] is the maximum likelihood estimator (MLE), and θ̃ ∈

arg maxθ∈Θ0
Pθ[x,y] is the QMLE.

We necessarily have LR(x,y) ≥ 0. Lemma 2 derives closed form expressions for the MLE

and QMLE.

Lemma 2.

1. The likelihood maximiser (unconstrained) of a sample (x,y) is given by

θ∗ = (x/nx,y/ny).

2. If x is not a strict MPS of y, then the quasi maximum likelihood estimator (QMLE;

constrained), is given by

θ̃ = (x/nx,y/ny)

and LR(x,y) = 0.

3. Otherwise, if x is a strict MPS of y, then the QMLE is given by either one of the

following k − 1 dominance-constrained distributions {θ̃Dj}j∈[k−1] ∈ D̄ defined by:

θ̃
Dj

i = (f̃
Dj

i , g̃
Dj

i ) =


(
xi
Xj
Lj,

yi
Yj
Lj

)
if i ≤ j(

xi
nx−Xj

(1− Lj), yi
ny−Yj (1− Lj)

)
otherwise;

or else it is one of the following two median-constrained distributions, {θ̃Mj}j=m−1,m ∈

M̄ defined by:

θ̃
Mj

i = (f̃
Mj

i , g̃
Mj

i ) =


(
xi
nx
, yi

2Yj

)
if i ≤ j(

xi
nx
, yi

2(ny−Yj)

)
otherwise.

The likelihood ratio statistic is then given by

LR(x,y) = 2 ln{ Pθ∗ [x,y]

max{Pθ̃D1 [x,y], ...,Pθ̃Dk−1 [x,y],Pθ̃Mm−1 [x,y],Pθ̃Mm [x,y]}
}.
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Proof. See appendix A

In lemma 2, the multiple cases arise from a Kuhn-Tucker optimization problem where,

depending on the regime of binding constraints, we obtain the various solutions above. A

large likelihood ratio is evidence that the constraint is hard to satisfy therefore rendering

the null hypothesis unlikely to be true.

The Z statistic Z statistics have been used in test of stochastic dominance for multivariate

distributions of ordinal variables (e.g. Yalonetzky, 2013). Let σLi =
√
Li(1− Li)nx+ny

nxny
be the

standard error of the pooled sample’s cumulative frequency Li, and σYi =
√

[(Yi/ny)(1− Yi/ny)]/ny

be the standard error of the sample cumulative frequency Yi. Then consider the Z statistic

in definition 4:

Definition 4. The Z statistic for a multinomial sample (x,y) is given by:

Z(x,y) = min
{
Z<
D , Z

≥
D , ZM

}
,

where Z<
D := min{(Yi/ny −Xi/nx)/σ

L
i | i < my}, Z≥D := min{(Xi/nx − Yi/ny)/σLi | i ≥ my}

and ZM := min{(0.5− Ymx−1/ny)/σ
Y
mx−1, (Ymx/ny − 0.5)/σYmx

}.

The term ZM is positive if and only if mx = my (corresponding to conditions [M1] and

[M2] in definition 1 for the population counterparts). Hence they are helpful to test the

equality of the population medians, which is necessary (but insufficient) to establish an MPS

ordering.

The term Z<
D is the minimum among all the standarised distances of sample cumulative

frequencies Y-X below my; whereas Z≥D is the minimum among all the standarised distances

of sample cumulative frequencies X-Y at and above my. Note the similarities with their

(unstandarised) population counterparts in conditions [D1] and [D2], respectively. The three

statistics are jointly positive, and hence Z is positive, if and only if the sample counterparts

of conditions [D1], [D2], [M1] and [M2] hold together. That is, Z is positive if and only if

Y � X.
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3.2 Method of Inference

The ideal choice of null distribution (Lehmann and Romano, 2005) is that which max-

imises the probability of the upper contour set {x′,y′ | |S(x′,y′)| ≥ |S(x,y)|}, namely

θ0 ∈ arg maxθ∈Θ0
Pθ[|S(x′,y′)| ≥ |S(x,y)|], because this choice ensures that the test always

has the correct size (see section 4.1). To the best of our knowledge, there is no analytical ex-

pression for it in the context of tests involving our specific null space, and numerical solutions

are computationally intensive. Instead, we follow the standard approach (e.g. Davidson and

Duclos (2013)) of using the QMLE of the observed sample θ0 = θ̃, characterised in lemma 2.

We approximate the probability Pθ0 [|S(x′,y′)| ≥ |S(x,y)|] by using either the asymp-

totic or the bootstrapped distribution of the test statistics. The following theorem will be

important for the purpose of asymptotic inference.

Theorem 1 (Asymptotic distributions of test statistics under the null). Suppose the true

distribution pair lies in the boundary, so that (x,y) ∼ θ0 ∈ ∂Θ0, then:

1. LR(x,y)
d−→ χ2(1), and

2. Z(x,y)
d−→ N (0, 1).

Hence if θ0 lies in the boundary of the null space, point 1 of the theorem states that the

LR statistics converges to a chi-squared variable with one degree of freedom. The one degree

of freedom in the chi-squared distribution stems from the difference between the dimensions

of the constrained and unconstrained maximum likelihood solutions ((Mood et al., 1974,

p. 440); see lemma 2 in appendix A). In the case where θ0 lies in the interior of the null

space, then the LR statistic will generally be lower than for distributions in the boundary,

therefore the distribution of the statistic will be first-order stochastically dominated by the

χ2(1) distribution. We refer the reader to Davidson and Duclos (2013, p. 105). Likewise,

the Z statistic is asymptotically standard normal when θ0 lies in ∂Θ0, but otherwise is

bounded by N (0, 1). We suggest in practice to approximate the P value of a sample (x,y)
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by 1− ζ[S(x,y)], where ζ denotes the CDF of N (0, 1) and χ2(1) distributions, respectively.

Thus, as we document in our Monte Carlo investigations, the size of the test can be expected

to be smaller than the associated nominal value.

Instead of calculating the test statistic of all the samples in the sample space, bootstrap

tests approximate the distribution of the test statistic by its empirical distribution in a

sample of B samples {(xi,yi)}i∈[B], each independently drawn from (x,y). The P value of

a sample (x,y) is then approximated by #{(xi,yi) | S(xi,yi) ≥ S(x,y), i ∈ [B]}/B.

Proposition 1 (Bootstrap p-values under the null; Davison and Hinkley (1997)). Suppose

the true distribution pair lies in the null space, so that (x,y) ∼ θ0 ∈ Θ0 as well as (xi,yi) ∼

θ0 ∈ Θ0 for all i ∈ [B] where B ∈ N \ {0}, then the bootstrap p-values for a given statistic

S(x,y) are:

TBS(x,y) = #{(xi,yi) | |S(xi,yi)| ≥ |S(x,y)|, i ∈ [B]}/B.

Combining the two test statistics with these two methods of approximation gives a family

of four tests and respective P values:

1. Asymptotic Z test: TAZ(x,y) = 1− Φ(Z(x,y)).

2. Asymptotic LR test: TALR(x,y) = 1− χ2(LR(x,y); 1).

3. Bootstrap Z test: TBZ(x,y) = #{(xi,yi) | Z(xi,yi) ≤ Z(x,y), i ∈ [B]}/B.

4. Bootstrap LR test: TBLR(x,y) = #{(xi,yi) | LR(xi,yi) ≥ LR(x,y), i ∈ [B]}/B.

In the next section we use Monte Carlo simulations to investigate the size and power prop-

erties of these four tests.

4 Size and Power Properties

In this section we introduce novel graphical tools, namely the size-boundary curve for the

study of test size, and power-locus curves for for the study of test power. We adopt the
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standard practice of using Monte Carlo experiments to measure the empirical distribution

of P values produced by the tests. Specifically, we draw M = 100, 000 independent samples

(xi,yi) from sets of judiciously chosen data generating processes (DGPs) θ ∈ Θ, and calculate

all the P -values, {T (xi,yi)}i∈[M ] for each test T . The rejection rate of a nominal size α test

at θ is then estimated by #{xi,yi) | T (xi,yi) ≤ α}/M .

We focus on DGPs with just two categories, i.e. k = 2. This class of DGPs is easy to

visualise because it is mathematically equivalent to the unit square, with f1 on one axis

and g1 on the other. The median boundary is mathematically equivalent to the horizontal

line intersecting the vertical axis at (0, 0.5) and the dominance boundary is mathematically

equivalent to the 45◦line. Because the boundary is unidimensional it is easy to show how

rejection rates vary along it. Similarly, we are able to identify a unidimensional ‘interior locus’

which allows us to illustrate how power varies against different DGPs in the alternative space.

We argue in section 4.3 that tests’ behaviour in the k = 2 case is indicative of behaviour in

higher dimensions.

4.1 Size

If T satisfies the inequality Pθ0 [T (x,y) < α] ≤ α for all null distributions θ ∈ Θ0, then we

say that the test is correctly sized at level α; otherwise it is oversized. Our tests will have

higher rejection rates on the boundary than anywhere else in the null space, therefore it is

sufficient to study their behaviour of the tests on the boundary alone. In order to build a

comprehensive picture of behaviour in the boundary, we calculate the rejection rates of our

tests along a grid of different DGPs in the boundary of the k = 2 null space, for a range

of sample sizes. Figure 2 illustrates the DGP’s used for the cases nx = ny = 10, 100, 1000.5

Our interest in small sample sizes, and more specifically in small ratio of nx to ny and ny

to nx is three fold: (a) to investigate the relative merits of the bootstrap versus asymptotic

5The precise choices of boundary DGPs for these and other sample sizes are listed in appendix B.
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inference in relation to size and power of Z and LR tests; (b) to explore lower bounds on

sample size in relation to the performance of the tests; and (c) to highlight the asymmetric

role of sample sizes of the spread distribution (ny) and the concentrated distribution (nx) in

the statistical performance of the four tests.

0
0

Θ0

Θ0

Θ1

Θ1
0.5

0.5 f1

g1

Figure 2: Boundary DGPs used to generate size curves for cases k = 2 and nx = ny.

Results Figure 3 shows the rejection rate of all four tests at the 5% nominal level, as

a function of the first coordinate of the boundary DGPs. In each panel, the first half of

the horizontal axis, from 0 to 0.5, corresponds to the median boundary (moving along the

horizontal dotted line from coordinate (0,0.5) to (0.5,0.5) in figure 2) ; and the second half of

the horizontal axis, from 0.5 to 1, corresponds to the dominance boundary (moving along the

diagonal dotted line from coordinate (0.5,0.5) to the origin in figure 2). The intersection of

the median and dominance boundaries, coincides with the point 0.5 (the kink of the dotted

line in the middle of figure 2). From top-left downward and rightward, panels in row i show

results for nx = 10i while panels in column i show results for ny = 10i, where i = 1, 2, 3.

All the tests are correctly sized in most cases. Exceptions arise on the dominance bound-

ary when nx, the size of the sample drawn from the more concentrated distribution, is small
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Figure 3: Size-boundary curves (for nominal 5% tests). Key: Solid/light blue — bootstrap

LR; dashed/light red — bootstrap Z; dotdash/dark blue — asymptotic LR; dotted/dark red

— asymptotic Z.
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relative to the size of the sample drawn from the more polarised distribution. In these

cases, tests based on the Z statistic can have sizes more than double their nominal levels.

Meanwhile, the sizes of tests based on the LR statistic are never more than 20% above

their nominal values. Two other exceptions occur: the asymptotic tests are both slightly

oversized near the end of the median boundary in the case (nx, ny) = (10, 1000), and the

bootstrap LR test is slightly oversized near the end of the dominance boundary in the case

(nx, ny) = (1000, 10).

The rejection rates of all tests drop to zero near the intersection of the median and

dominance boundaries, especially when the sample size of the less concentrated distribution

is small. The region of the boundary where the rejection rate drops to zero vanishes as

the sample sizes increase. The lower rejection rates vis-a-vis those in other points in the

boundary are not surprising: for points other than (0.5,0.5), the proportion of neighbouring

distributions that belong to the null and alternative space are of equal size, namely 1/2

and 1/2. However, at (0.5,0.5), the proportion of neighbouring distributions that belong

to the null space is now equal to 3/4, whereas the proportion of neighbouring distributions

that belong to the alternative space is now equal to 1/4. For this reason, the probability

of a sample with an empirical distribution in the null space is more likely, leading to fewer

rejections of the null hypothesis.

4.2 Power

Besides correct size, the other crucial property for statistical tests is the ability to distinguish

between true and false hypotheses. The power of an α-sized test against an alternative

distribution θ1 ∈ Θ1 has traditionally been defined to equal the probability of an α-level test

rejecting H0 under θ1, namely Pθ1 [T (x,y) ≤ α]. However, Davidson and MacKinnon (1998)

propose the measure:

ψ(T ; θ1, α) ≡ Pθ1 [T (x,y) ≤ Pθ0 [T (x,y) ≤ α]], (2)
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where θ0 is the “closest null distribution” to the alternative θ1. We take θ0 to be the

distribution in the null space which minimises the sample-size-weighted Euclidean distance

to the DGP θ1. In the case k = 2, there there are only two candidates for the closest

null distribution: the closest distribution in the median boundary, θM := (f , (1
2
, 1

2
)); and

the closest distribution in the dominance boundary, θD := (nxf+nyg

nx+ny
, nxf+nyg

nx+ny
). Figure 1

illustrates both the closest pair of distributions on the median boundary, denoted by red

circles, and the closest pair of distributions on the dominance boundary, illustrated by blue

circles, to the pair of distributions denoted by black circles, for k = 5.

A test T is uniformly more powerful than a test T ′ at level α if ψ(T ;θ1, α) ≥ ψ(T ′;θ1, α)

for all θ1 ∈ Θ1. Typically a uniformly most powerful test does not exist. The best we can

do is comparing the power of the tests at different alternative DGPs. Because the boundary

separating the null and alternative spaces of the tests introduced in this paper arises as

the union of the dominance and median boundaries, we focus on studying power against

alternatives that are equidistant from these median and dominance boundaries. We refer to

these DGPs as the ‘interior locus’. Figure 4 shows the grid of DGPs on the interior locus,

connected by a solid blue line, that we use for our experiments with nx = ny.
6 We also

show, for each of these alternative DGPs, the two closest null distributions — one on each

boundary — connected to the interior locus by a red dashed line. This interior locus is worth

studying because it partitions the alternative space into a set of DGPs which are closest to

the median boundary and a set of DGPs closest to the dominance boundary, and every DGP

in the alternative space can be uniquely identified with a point on the interior locus which

shares the same closest null distribution (be it on the median or the dominance boundary).

Moreover, we expect all the tests to have lower power against an arbitrary alternative DGP

than against its counterpart in the interior locus, thus the interior locus provides an upper

bound on the test’s power.

6Precise values for these DGPs, and those used for other ratios of nx to ny are listed in appendix B.

21



0
0

Θ0

Θ0 Θ1

Θ1

0.5

0.5 f1

g1

Figure 4: Alternative DGPs used to generate power curves for cases k = 2 and nx = ny.

Results In figure 5 we introduce a novel power-locus curve used to investigate power

properties of the various tests. By definition, the alternative DGPs in the ‘interior locus’

have two closest null distributions. Therefore there are two ways to evaluate the expression

in equation (2). Each panel of figure 5 illustrates both methods for a different pair of

sample sizes. The first half of the horizontal axis, from f1 = 0 to f1 = 0.5, depicts the

‘median power curve’: the power against each alternative DGP from left to right in terms

of figure 4, calculated using the closest null on the median boundary. The second half,

from f1 = 0.5 to f1 = 1, depicts the reflected ‘dominance power curve’: power against

each alternative calculated using the closest null on the dominance boundary and in the

reverse order. Such display of results enables us to see how the power varies as the DGP

approaches the intersection of the two boundary lines from the ‘median direction’ and from

the ‘dominance’ direction, respectively. We expect that power against alternatives near the

median boundary will behave similarly to the median power curve, and that power against

alternatives near the dominance boundary will behave similarly to the dominance power

curve.

All the tests are able to perfectly distinguish some alternatives from the null space when-
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Figure 5: Power-locus curves (for nominal 5% tests). Key: Solid/light blue — bootstrap LR;

dashed/light red — bootstrap Z; dotdash/dark blue — asymptotic LR; dotted/dark red —

asymptotic Z.
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ever both sample sizes are above 100. By the time both sample sizes reach 1000, the tests

are able to perfectly distinguish a false hypothesis along distributions pertaining to three

quarters of the interior locus. However, power drops rapidly when sample size falls below

100: power halves when nx falls from 100 to 10, and reduces by a factor of 4 when ny falls

from 100 to 10. All the tests have more or less the same power when sample sizes are both in

the order 100 or higher. Even with smaller sample sizes, the choice of test statistic appears to

have minimal impact on power. However, there is evidence of systematic disparities between

asymptotic and bootstrap inference for smaller sample sizes. When nx is both small rela-

tive to ny and very small in absolute terms, the asymptotic tests are more powerful against

some distributions nearer the median boundary. However, when ny is very small, the power

of asymptotic inference is both erratic and consistently lower than the power of bootstrap

inference.

4.3 More than Two Categories

A distribution (f , g) with k > 2 categories can be decomposed into k − 1 two-category

distributions (f i, gi) defined by (F i,Gi) = ((Fi, 1), (Gi, 1)) for any i ∈ [k− 1]. The rejection

rate of a test at (f , g) is therefore a function of the k − 1 rejection rates at each of the

(f i, gi). For example, intersection-union tests (Berger, 1982) reject the null that (f , g) are

not ordered if and only if they reject all the k − 1 hypotheses that each of the (f i, gi) are

not ordered. Graphically, this means that we infer that all the coordinates in figure 1 are

contained within the two triangles representing the alternative space, if and only if we infer

that the coordinate closest to the edge of the triangles is nonetheless inside. The study of

real world DGP’s characterised by more than two categories in taken up in section 5.
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5 Empirical illustrations

We consider three real-world inequality assessments: happiness in the United States, self-

reported health in a set of European countries, and sanitation ladders in Pakistan. In each

of the three applications we undertake 499 bootstrap replications. In the context of self-

reported health and sanitation ladders we present p-value curves constructed from 1000

Monte Carlo simulations.

5.1 Happiness inequality in the United States

We revisit the study of Dutta and Foster (2013) on happiness inequality in the United States.

They use data from the U.S. General Social Survey (GSS) between 1972 and 2010 (Dutta

and Foster, 2013, table 1, p. 402). The GSS asks the following ordered-response question

on wellbeing: “Taken all together, how would you say things are these days — would you

say that you are ‘very happy’, ‘pretty happy’ or ‘not too happy?’ ” Dutta and Foster (2013)

did not test whether the documented ordering of happiness distributions was statistically

significant. The family of tests developed in this paper provides the required statistical

inference.

Table 1 reports P values of the bootstrap LR test, where an entry in row i of column j is

the P value of the sample under the null hypothesis that year j distribution is not an MPS

of year i distribution. A blank cell indicates that column j sample is not an MPS of the

row i sample. Our results show that most of these inequality comparisons are (individually)

statistically significant, with P values close to 0. The inferential exercise broadly supports

the underlying pattern identified by Dutta and Foster (2013), namely a fall in happiness

inequality across the 70s and 80s, that is reversed in the 90s and 2000s.

There are, however, some noteworthy exceptions. For example consider the finding that

‘happiness inequality was lower in 1985 compared with seventeen other years’ (Dutta and

Foster, 2013, p. 405). The P values reported in Table 1 reveal that the P value of the
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Table 1: Bootstrap LR p-values for Dutta and Foster (2013, table 2).
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comparison between 1985 and 1998 equals 0.11. Other comparisons where the P value of

the test is 10% or higher include the (1993, 2004) and (1993, 2006) pairs (both with a P

value of 0.14), the (1998, 1975) pair (0.16), the (2000, 1987) pair (0.27), the (2004, 1982)

pair (0.50), and the (2006, 2004) pair (0.40). If one adopts the standard convention of failing

to reject a null hypothesis when the associated P value exceeds the 5% level, one would not

find sufficient statistical evidence to support the conclusion that distributions i and j were

ordered in the aforementioned comparisons.

5.2 Inequality in self-assessed health in the European Union

Self-assessed health (SAH) measures are increasingly used in health surveys, as such sub-

jective assessments of well-being have shown to be strong predictors of morbidity as well as

mortality (Latham and Peek, 2013). The Survey on Incomes and Living Conditions (SILC)

conducted by EUROSTAT collects data on five levels of self-assessed health in the European

Union. Respondents choose from the following ordered subjective health categories: (1) very

bad, (2) bad, (3) fair, (4) good, and (5) very good. In 2017, the multinomial distributions of

the Netherlands and Denmark were, respectively, x/nx = (0.01, 0.04, 0.19, 0.54, 0.22) with a

sample size nx = 13328 and y/ny = (0.03, 0.06, 0.21, 0.45, 0.25) with a sample size ny = 5906.

The two samples are ordered: sharing ‘good health’ as median category and with Denmark’s

distribution being a MPS of the Netherlands’. As is typical of distributions of self-assessed

health, both distributions exhibit some class imbalances, with near-zero probability mass as-

sociated with the bottom health categories, and with over 40% mass attached to the median

category.

We investigate a Z-test and a likelihood ratio test of the null hypothesis that the Danish

distribution is not a MPS of the Dutch distribution. Figure 6 shows that all the tests are

able to perfectly distinguish this false hypothesis from the closest (true) null hypothesis (the

power curves are vertical). Next, we turn our attention to comparing the four tests in terms
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of the P-value curves in the figure. For all relevant nominal test sizes (0 to 10%), all four tests

are correctly sized: the asymptotic Z test is undersized, while the actual size of the other

three tests coincides with the nominal size. In the context of this application, pertaining

to large samples associated with distributions of self-assessed health, it is not possible to

infer whether the Z or LR test is preferable in terms of size. Furthermore, this conclusion

remains unchanged when we either consider the asymptotic or bootstrap approximation of

the related test statistics.
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5.3 Inequality in sanitation ladders in Pakistan

Improvements in access to toilet facilities is a measure of living standards related to sanitation

in developing countries (Seth and Yalonetzky, 2020). The 2017-8 Demographic and Health

Survey of Pakistan collects data on different forms of sanitation facilities which can be

grouped into a four-level sanitation ladder following the guidelines of the Joint Monitoring

Program by the WHO and UNICEF.7 The ensuing ordered categories are the following:

(1) open defecation, (2) access to an unimproved toilet facility (buckets and latrine toilets

7See https://washdata.org/.
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that do not flush), (3) shared improved toilet facilities (such as a shared toilet that flushes

to piped sewer system) and finally (4) improved toilet facility that is not shared. The

probability mass distributions pertaining to Islamabad (the capital city) and Baluchistan are,

respectively, x/nx = (0.003, 0.001, 0.060, 0.936) with a sample size nx = 1295 and y/ny =

(0.135, 0.039, 0.142, 0.6849 with a sample size ny = 1521. The two distributions highlight

important regional differences in attainment in sanitation, and furthermore in spread. That

is, Baluchistan’s sample is a MPS of Islamabad’s.

There are three interesting properties these distributions exhibit in terms of statistical

inference. Firstly, the median state in both distributions is m = 4 = k (the top category).

Were it not the case that our proposed tests jointly test that the distributions share an equal

median, and are ordered according to the MPS criterion, the inferential exercise here would

be equivalent to a test of first-order stochastic dominance (of Islamabad over Baluchistan).

However, as we have earlier emphasised, the critical region of the tests in this paper is

constrained by the union of the dominance and median boundaries, and in this sense, a simple

test of first-order dominance would not provide a valid inferential tool in this application.

The second interesting property in the data is that both distributions exhibit severe class

imbalances, with the highest sanitation state (improved toilet facility that is not shared)

being associated with probability mass in excess of 66%. Finally, the Islamabad distribution

has a probability mass of 0.001 (one unique observation) in the second sanitary ladder state.

We investigate a Z-test and a LR test of the null hypothesis that the Baluchistan distri-

bution is not a MPS of Islamabad. As in the EU health application, all the tests are able to

perfectly distinguish this false hypothesis from the closest (true) null hypothesis, therefore

the reproduce the power curves.8 We therefore focus our attention on comparing the four

tests in terms of the P-value curves, plots of which are provided in Figure 7. The dark red

curve presents the P-value plot for the asymptotic approximation of the Z test, while the

light red curve pertains to the asymptotic LR test. The dark blue curve is the P-value curve

8They are available upon request.
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corresponding to the bootstrap approximation of Z statistic’s sampling distribution, while

finally the light blue curve refers to the bootstrap LR test.

We summarise our findings for all relevant nominal test sizes (0 to 10%) as follows: the

asymptotic LR tests is correctly sized (the relevant P-value curve is below the 45 degree

line), the asymptotic Z and the bootstrap Z tests have actual size equal to the nominal size

(the P-value curves are on the 45 degree line). On the other hand, the bootstrap LR test

is moderately oversized (the P-value curve lies above the 45 degree line). In this range,

the bootstrap LR test would appear to be somewhat less oversized than the bootstrap Z

test. Overall though, all four tests perform satisfactorily in the context of this application,

with asymptotic inference being preferable over bootstrap inference. We attribute the better

performance of asymptotic inference in the context of this application to the occurrence of

severe class imbalances in both distributions.
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6 Conclusion

The purpose of this paper was to introduce a family of tests for the hypothesis that an ordered

multinomial distributionG is a MPS of F . Using Monte Carlo simulations, we found that the

choice between Z and LR test statistics does not have a large impact on the tests’ properties,

but the method used to approximate the sampling distribution of the statistics under the null

does. In a wide range of data generating processes, bootstrap inference generally exhibited

better size and power properties than asymptotic inference. We have further illustrated

the proposed tests in three areas of inequality applications: happiness in the United States,

self-assessed health in Europe and sanitation ladders in Pakistan.

The paper can be extended in several directions. For any quantile other than the median,

tests of quantile preserving spreads à la Mendelson (1987) can be formulated by replacing

the median boundary with an appropriate quantile boundary. Likewise, one may derive

tests of hypotheses constructed from linear transformations of the vector of contrasts related

to the median preserving spreads ordering; for instance, the bipolarization partial order of

Chakravarty and Maharaj (2012). Finally, we mention the need to develop exact inference

for tests of median-preserving spreads, yielding the P values of every conceivable sample, as

a companion method to the bootstrap and asymptotic methods of inference introduced in

this paper.
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Appendices

A Mathematical appendix

Proof of lemma 1. First we show that every distribution in either the median or the dom-

inance boundaries (or both) is in the boundary. Let θ ∈ M̄ ∪ D̄. Since θ = (F ,G)

is weakly ordered, F and G have at least one common median, m. The common me-

dian is unique unless Fi = Gi = 1
2

for some i ∈ [k]. In this case we let m = min{i |

Fi = Gi = 1
2
}. Define a sequence {θ1j}j∈N by F 1j := 1

j
I(j > m) +

(
1− 1

j

)
F and

G1j := 1
j

(
1
2
I(j > m) + 1

4

)
+
(

1− 1
j

)
G, for all j < k. This sequence converges to θ and it

is easy to see graphically that each θ1
j

is strictly ordered. Hence every element of M̄ ∪ D̄ is

the limit of a sequence in the complement of the null space. Now define a sequence {θ0j}j∈N

by F 0j := 1
j

1
2

+
(

1− 1
j

)
F and G0j :=

(
1− 1

j

)
G. This sequence also converges to θ and

it is easy to see graphically that each θ1
j

is strictly ordered, so long as there exists either

an i ≤ m such that F 0
i = G0

i or else an i ≥ m such that F 0
i >

1
2

= G0
i . If neither or these

conditions hold then, in order for θ to be in M̄ ∪ D̄, there must exist either an i > m such

that F 0
i = G0

i or else an i ≤ m such that F 0
i >

1
2

= G0
i . In this case we use the sequence

defined by G0j := 1
j

+
(

1− 1
j

)
G.

Now we show that every distribution in the boundary is in either the median or the

dominance boundaries (or both). If θ ∈ (M̄ ∪ D̄)c is in neither the median nor dominance

boundaries, then it must either be strictly ordered, or else unordered. Moreover, ε = min{|1
2
−

Gi|, |Fi − Gi| | i < k} is strictly positive. If θ it strictly ordered then it strictly satisfies all

the inequalities in definition 1 by a margin of at least ε. Therefore any distribution θ′ within
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a distance ε from θ must also strictly satisfy these inequalities. Thus there cannot exist

any sequence of unordered distributions that converges to θ. Similarly, if θ is unordered

then it strictly violates at least one of the inequalities in definition 1 by a margin of at

least ε. Therefore any distribution θ′ within a distance ε from θ must also violate the same

inequality. Thus there cannot exist any sequence of ordered distributions that converges to

θ.

Proof of lemma 2 point 3. The are two ways the null hypothesis can be true: either one of

the k−1 dominance conditions in [D1] or [D2] of definition 1 can fail, or the distributions do

not share the same median and the conditions [M1] or [M2] in definition 1 fail. The easiest

way for the former constraint to be satisfied is if Fi = Gi for some i ∈ [k− 1] (which justifies

a definition of strict MPS); the easiest way to satisfy the latter is if the median lies between

two categories so that Gm−1 = 1
2

or Gm = 1
2
. Thus we can restate the problem:

θ̃ = arg max
θ∈Θ0

Pθ[x,y]

s.t. Fi = Gi for some i ∈ [k − 1]

or Gm−1 =
1

2
or Gm =

1

2
.

We now break the problem into two steps. We first find the k + 1 distributions which

maximise the likelihood, subject to each of these individual k + 1 constraints, namely

θ̃i = arg max
θ∈Θ0

Pθ[x,y] s.t. Fi = Gi ∀i < k (3)

θ̃k = arg max
θ∈Θ0

Pθ[x,y] s.t. Gm−1 =
1

2
(4)

θ̃k+1 = arg max
θ∈Θ0

Pθ[x,y] s.t. Gm =
1

2
(5)

The solution to the original problem is then given by the distribution among these which

maximises the sample’s likelihood function: θ̃ = arg maxθ̃=θ̃i
Pθ̃i [x,y].

The solution to the problems in (3) are given in Davidson and Duclos (2013, p. 92)

for each i ∈ [k − 1]. The solution to (5) is found by noting that the independence of f
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and g implies that the solution to arg maxθ∈Θ0
Pθ[x,y] s.t. Gm = 1

2
is given by the pair(

arg maxf Pf [x], arg maxg Pg[y] s.t. Gm = 1
2

)
. The first of these terms is simply. x/nx. We

solve for the second term by taking logarithms of the likelihood function Pg[y] (under the

i.i.d. assumption) and by setting up the Lagrangian L(g, λ, µ) =
∑

i∈[k] yi log gi + λ(1 −∑
i∈[k] gi) + µ(1

2
−
∑

i∈[m] gi). The first order condition requires that

∂L
∂gi

=


yi
g̃i
− λ− µ if i ≤ m

yi
g̃i
− λ if i > m

= 0

which implies

yi =


(λ+ µ)g̃i if i ≤ m

λg̃i if i > m.

This in turn implies that Ym = G̃m(λ + µ) = 1
2
(λ + µ) and Yk − Ym = (1 − G̃m)λ = 1

2
λ.

Together, these give (λ+ µ) = 2Ym and λ = 2(Yk − Ym), and thus

g̃i =


yi

2Ym
if i ≤ m

yi
2(ny−Ym)

if i > m.

The solution for (4) is found analogously.

B Size and Power curve grid points

Table 2 lists the first coordinate of the DGP’s on the median boundary and table 3 lists the

DGPs on the dominance boundary.9 Our choice of dominance boundary DGPs depends on

the sample size; the choice of median DGPs is the same for all sample sizes.

Table 4 lists the first coordinate of the DGPs on the interior locus of the alternative space

used to evaluate power. The concentrated distributions f are chosen to be the same for all

9Because k = 2, it is sufficient to note only the mass in the first category; the full distributions can be

recovered from f1 and g1 by f = (f1, 1− f1) and g = (g1, 1− g1).
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Table 2: Median boundary DGPs used to construct the size curve in figure 3

Null DGPs on median boundary (all sample sizes)

fmed
1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

gmed
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 3: Dominance boundary DGPs used to construct the size curve in figure 3

Null DGPs on dominance boundary (sample size dependent)

(nx, ny) = (10, 10), (100, 100), (1000, 1000)

fdom
1 = gdom

1 0.46 0.43 0.39 0.36 0.32 0.28 0.25 0.21 0.16 0.10 0.05

(nx, ny) = (10, 100), (100, 1000)

fdom
1 = gdom

1 0.47 0.45 0.42 0.39 0.36 0.34 0.30 0.27 0.23 0.15 0.10 0.05

(nx, ny) = (10, 1000)

fdom
1 = gdom

1 0.48 0.45 0.43 0.40 0.37 0.35 0.32 0.29 0.25 0.15 0.10 0.05

(nx, ny) = (100, 10), (1000, 100)

fdom
1 = gdom

1 0.45 0.40 0.36 0.31 0.26 0.21 0.17 0.12 0.07 0.05

(nx, ny) = (1000, 10)

fdom
1 = gdom

1 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

sample sizes nx : ny; the precise choice of spread distribution g is then chosen to ensure that

it is equidistant from the median and dominance boundaries.
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Table 4: Alternative DGPs on the interior locus illustrated in figure 4.

Alternative DGPs (spread distributions depends on sample size)

fA1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(nx,ny)=(10,10),(100,100),(1000,1000)

gA1 0.277 0.312 0.342 0.368 0.392 0.415 0.437 0.458 0.479

(nx,ny)=(10,100),(100,1000)

gA1 0.252 0.289 0.32 0.349 0.376 0.402 0.427 0.452 0.476

(nx,ny)=(10,100),(10,1000)

gA1 0.244 0.282 0.314 0.344 0.371 0.398 0.424 0.450 0.475

(nx,ny)=(100,10)

gA1 0.235 0.280 0.315 0.346 0.375 0.401 0.427 0.451 0.476

(nx,ny)=(1000,10)

gA1 0.219 0.268 0.306 0.339 0.369 0.397 0.424 0.449 0.475
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